Search

Neil P. Hammell

Examiner (ID: 9948, Phone: (571)270-5919 , Office: P/1636 )

Most Active Art Unit
1636
Art Unit(s)
1636, 1634
Total Applications
484
Issued Applications
164
Pending Applications
50
Abandoned Applications
284

Applications

Application numberTitle of the applicationFiling DateStatus
Array ( [id] => 11822218 [patent_doc_number] => 20170211156 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-07-27 [patent_title] => 'Quantitative Reverse Transcription Polymerase Chain Reaction Kit for Breast Cancer Drug Screening Test and Early Diagnosis Using Tissue and Blood' [patent_app_type] => utility [patent_app_number] => 15/454914 [patent_app_country] => US [patent_app_date] => 2017-03-09 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 33 [patent_figures_cnt] => 33 [patent_no_of_words] => 8039 [patent_no_of_claims] => 1 [patent_no_of_ind_claims] => 1 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15454914 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/454914
Quantitative Reverse Transcription Polymerase Chain Reaction Kit for Breast Cancer Drug Screening Test and Early Diagnosis Using Tissue and Blood Mar 8, 2017 Abandoned
Array ( [id] => 14821407 [patent_doc_number] => 10407697 [patent_country] => US [patent_kind] => B2 [patent_issue_date] => 2019-09-10 [patent_title] => Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription [patent_app_type] => utility [patent_app_number] => 15/435233 [patent_app_country] => US [patent_app_date] => 2017-02-16 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 128 [patent_figures_cnt] => 161 [patent_no_of_words] => 86197 [patent_no_of_claims] => 25 [patent_no_of_ind_claims] => 3 [patent_words_short_claim] => 123 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => patent [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15435233 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/435233
Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription Feb 15, 2017 Issued
Array ( [id] => 11670406 [patent_doc_number] => 20170159125 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-06-08 [patent_title] => 'MICRO-RNA BIOMARKERS FOR HAEMOLYSIS AND METHODS OF USING SAME' [patent_app_type] => utility [patent_app_number] => 15/433774 [patent_app_country] => US [patent_app_date] => 2017-02-15 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 7022 [patent_no_of_claims] => 10 [patent_no_of_ind_claims] => 2 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15433774 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/433774
MICRO-RNA BIOMARKERS FOR HAEMOLYSIS AND METHODS OF USING SAME Feb 14, 2017 Abandoned
Array ( [id] => 11663773 [patent_doc_number] => 20170152493 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-06-01 [patent_title] => 'Fusion Polymerase and Method for Using the Same' [patent_app_type] => utility [patent_app_number] => 15/432031 [patent_app_country] => US [patent_app_date] => 2017-02-14 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 30 [patent_figures_cnt] => 30 [patent_no_of_words] => 21174 [patent_no_of_claims] => 23 [patent_no_of_ind_claims] => 2 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15432031 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/432031
Fusion polymerase and method for using the same Feb 13, 2017 Issued
Array ( [id] => 13037855 [patent_doc_number] => 10041051 [patent_country] => US [patent_kind] => B2 [patent_issue_date] => 2018-08-07 [patent_title] => Fusion polymerase and method for using the same [patent_app_type] => utility [patent_app_number] => 15/432080 [patent_app_country] => US [patent_app_date] => 2017-02-14 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 30 [patent_figures_cnt] => 38 [patent_no_of_words] => 19894 [patent_no_of_claims] => 22 [patent_no_of_ind_claims] => 1 [patent_words_short_claim] => 102 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => patent [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15432080 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/432080
Fusion polymerase and method for using the same Feb 13, 2017 Issued
Array ( [id] => 11663799 [patent_doc_number] => 20170152518 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-06-01 [patent_title] => 'OLIGONUCLEOTIDES FOR MAKING A CHANGE IN THE SEQUENCE OF A TARGET RNA MOLECULE PRESENT IN A LIVING CELL' [patent_app_type] => utility [patent_app_number] => 15/430069 [patent_app_country] => US [patent_app_date] => 2017-02-10 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 12 [patent_figures_cnt] => 12 [patent_no_of_words] => 11697 [patent_no_of_claims] => 19 [patent_no_of_ind_claims] => 2 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15430069 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/430069
Method for increasing the activity of a cystic fibrosis transmembrane conductance regulator protein Feb 9, 2017 Issued
Array ( [id] => 11836725 [patent_doc_number] => 20170218444 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-08-03 [patent_title] => 'SIZE SELECTION OF DNA FOR CHROMATIN ANALYSIS' [patent_app_type] => utility [patent_app_number] => 15/427845 [patent_app_country] => US [patent_app_date] => 2017-02-08 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 2 [patent_figures_cnt] => 2 [patent_no_of_words] => 15106 [patent_no_of_claims] => 46 [patent_no_of_ind_claims] => 6 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15427845 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/427845
SIZE SELECTION OF DNA FOR CHROMATIN ANALYSIS Feb 7, 2017 Abandoned
Array ( [id] => 11627705 [patent_doc_number] => 20170137894 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-05-18 [patent_title] => 'Oligonucleotides and Methods for Detecting KRAS and PIK3CA Mutations' [patent_app_type] => utility [patent_app_number] => 15/420244 [patent_app_country] => US [patent_app_date] => 2017-01-31 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 11 [patent_figures_cnt] => 11 [patent_no_of_words] => 11670 [patent_no_of_claims] => 9 [patent_no_of_ind_claims] => 1 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15420244 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/420244
Oligonucleotides and methods for detecting KRAS and PIK3CA mutations Jan 30, 2017 Issued
Array ( [id] => 11837843 [patent_doc_number] => 20170219562 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-08-03 [patent_title] => 'EPIGENETIC COMPOUND SCREENING PLATFORM' [patent_app_type] => utility [patent_app_number] => 15/418427 [patent_app_country] => US [patent_app_date] => 2017-01-27 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 7 [patent_figures_cnt] => 7 [patent_no_of_words] => 8486 [patent_no_of_claims] => 20 [patent_no_of_ind_claims] => 2 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15418427 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/418427
EPIGENETIC COMPOUND SCREENING PLATFORM Jan 26, 2017 Abandoned
Array ( [id] => 11604464 [patent_doc_number] => 20170121766 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-05-04 [patent_title] => 'ALTERNATIVE NUCLEOTIDE FLOWS IN SEQUENCING-BY-SYNTHESIS METHODS' [patent_app_type] => utility [patent_app_number] => 15/404735 [patent_app_country] => US [patent_app_date] => 2017-01-12 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 9 [patent_figures_cnt] => 9 [patent_no_of_words] => 8372 [patent_no_of_claims] => 6 [patent_no_of_ind_claims] => 2 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15404735 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/404735
Alternative nucleotide flows in sequencing-by-synthesis methods Jan 11, 2017 Issued
Array ( [id] => 13622819 [patent_doc_number] => 20180362961 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2018-12-20 [patent_title] => METHODS AND COMPOSITIONS FOR ENHANCED NUCLEASE-MEDIATED GENOME MODIFICATION AND REDUCED OFF-TARGET SITE EFFECTS [patent_app_type] => utility [patent_app_number] => 16/060759 [patent_app_country] => US [patent_app_date] => 2016-12-06 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 28778 [patent_no_of_claims] => 0 [patent_no_of_ind_claims] => -10 [patent_words_short_claim] => 90 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16060759 [rel_patent_id] =>[rel_patent_doc_number] =>)
16/060759
METHODS AND COMPOSITIONS FOR ENHANCED NUCLEASE-MEDIATED GENOME MODIFICATION AND REDUCED OFF-TARGET SITE EFFECTS Dec 5, 2016 Abandoned
Array ( [id] => 11499474 [patent_doc_number] => 20170073659 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-03-16 [patent_title] => 'NOVEL LYSYL TRNA SYNTHETASE FRAGMENT AND MICROVESICLES COMPRISING SAME' [patent_app_type] => utility [patent_app_number] => 15/361698 [patent_app_country] => US [patent_app_date] => 2016-11-28 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 20 [patent_figures_cnt] => 20 [patent_no_of_words] => 15895 [patent_no_of_claims] => 10 [patent_no_of_ind_claims] => 1 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15361698 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/361698
NOVEL LYSYL TRNA SYNTHETASE FRAGMENT AND MICROVESICLES COMPRISING SAME Nov 27, 2016 Abandoned
Array ( [id] => 11649536 [patent_doc_number] => 20170145438 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-05-25 [patent_title] => 'Viral Vectors for Gene Editing' [patent_app_type] => utility [patent_app_number] => 15/347996 [patent_app_country] => US [patent_app_date] => 2016-11-10 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 9 [patent_figures_cnt] => 9 [patent_no_of_words] => 11008 [patent_no_of_claims] => 18 [patent_no_of_ind_claims] => 1 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15347996 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/347996
Viral Vectors for Gene Editing Nov 9, 2016 Abandoned
Array ( [id] => 12206094 [patent_doc_number] => 20180051320 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2018-02-22 [patent_title] => 'DEPLETION OF ABUNDANT SEQUENCES BY HYBRIDIZATION (DASH)' [patent_app_type] => utility [patent_app_number] => 15/348855 [patent_app_country] => US [patent_app_date] => 2016-11-10 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 4 [patent_figures_cnt] => 4 [patent_no_of_words] => 18585 [patent_no_of_claims] => 20 [patent_no_of_ind_claims] => 3 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15348855 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/348855
DEPLETION OF ABUNDANT SEQUENCES BY HYBRIDIZATION (DASH) Nov 9, 2016 Abandoned
Array ( [id] => 11492926 [patent_doc_number] => 20170067112 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-03-09 [patent_title] => 'SEQUENCES ASSOCIATED WITH TDP-43 PROTEINOPATHIES AND METHODS OF USING THE SAME' [patent_app_type] => utility [patent_app_number] => 15/346268 [patent_app_country] => US [patent_app_date] => 2016-11-08 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 2 [patent_figures_cnt] => 2 [patent_no_of_words] => 5999 [patent_no_of_claims] => 13 [patent_no_of_ind_claims] => 2 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15346268 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/346268
Sequences associated with TDP-43 proteinopathies and methods of using the same Nov 7, 2016 Issued
Array ( [id] => 11662514 [patent_doc_number] => 20170151220 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-06-01 [patent_title] => 'IBS MICROBIOTA AND USES THEREOF' [patent_app_type] => utility [patent_app_number] => 15/342739 [patent_app_country] => US [patent_app_date] => 2016-11-03 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 16 [patent_figures_cnt] => 16 [patent_no_of_words] => 18334 [patent_no_of_claims] => 13 [patent_no_of_ind_claims] => 3 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15342739 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/342739
IBS microbiota and uses thereof Nov 2, 2016 Issued
Array ( [id] => 11873840 [patent_doc_number] => 09745600 [patent_country] => US [patent_kind] => B2 [patent_issue_date] => 2017-08-29 [patent_title] => 'Compositions and methods of engineered CRISPR-Cas9 systems using split-nexus Cas9-associated polynucleotides' [patent_app_type] => utility [patent_app_number] => 15/339633 [patent_app_country] => US [patent_app_date] => 2016-10-31 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 22 [patent_figures_cnt] => 27 [patent_no_of_words] => 58152 [patent_no_of_claims] => 21 [patent_no_of_ind_claims] => 1 [patent_words_short_claim] => 390 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => patent [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15339633 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/339633
Compositions and methods of engineered CRISPR-Cas9 systems using split-nexus Cas9-associated polynucleotides Oct 30, 2016 Issued
Array ( [id] => 11441862 [patent_doc_number] => 20170042883 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-02-16 [patent_title] => 'Methods for Detecting and Treating Rhinovirus Infection' [patent_app_type] => utility [patent_app_number] => 15/333300 [patent_app_country] => US [patent_app_date] => 2016-10-25 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 15 [patent_figures_cnt] => 15 [patent_no_of_words] => 20115 [patent_no_of_claims] => 20 [patent_no_of_ind_claims] => 13 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15333300 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/333300
Methods for Detecting and Treating Rhinovirus Infection Oct 24, 2016 Abandoned
Array ( [id] => 11421732 [patent_doc_number] => 20170029876 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-02-02 [patent_title] => 'METHOD FOR DETECTING, QUANTIFYING AND MAPPING DAMAGE AND/OR REPAIR OF DNA STRANDS' [patent_app_type] => utility [patent_app_number] => 15/295120 [patent_app_country] => US [patent_app_date] => 2016-10-17 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 9 [patent_figures_cnt] => 9 [patent_no_of_words] => 22313 [patent_no_of_claims] => 15 [patent_no_of_ind_claims] => 1 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15295120 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/295120
METHOD FOR DETECTING, QUANTIFYING AND MAPPING DAMAGE AND/OR REPAIR OF DNA STRANDS Oct 16, 2016 Abandoned
Array ( [id] => 11400501 [patent_doc_number] => 20170021039 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-01-26 [patent_title] => 'Cancer Therapy' [patent_app_type] => utility [patent_app_number] => 15/287909 [patent_app_country] => US [patent_app_date] => 2016-10-07 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 3045 [patent_no_of_claims] => 16 [patent_no_of_ind_claims] => 2 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15287909 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/287909
Cancer Therapy Oct 6, 2016 Abandoned
Menu