
Neil P. Hammell
Examiner (ID: 9948, Phone: (571)270-5919 , Office: P/1636 )
| Most Active Art Unit | 1636 |
| Art Unit(s) | 1636, 1634 |
| Total Applications | 484 |
| Issued Applications | 164 |
| Pending Applications | 50 |
| Abandoned Applications | 284 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 11822218
[patent_doc_number] => 20170211156
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-07-27
[patent_title] => 'Quantitative Reverse Transcription Polymerase Chain Reaction Kit for Breast Cancer Drug Screening Test and Early Diagnosis Using Tissue and Blood'
[patent_app_type] => utility
[patent_app_number] => 15/454914
[patent_app_country] => US
[patent_app_date] => 2017-03-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 33
[patent_figures_cnt] => 33
[patent_no_of_words] => 8039
[patent_no_of_claims] => 1
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15454914
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/454914 | Quantitative Reverse Transcription Polymerase Chain Reaction Kit for Breast Cancer Drug Screening Test and Early Diagnosis Using Tissue and Blood | Mar 8, 2017 | Abandoned |
Array
(
[id] => 14821407
[patent_doc_number] => 10407697
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2019-09-10
[patent_title] => Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription
[patent_app_type] => utility
[patent_app_number] => 15/435233
[patent_app_country] => US
[patent_app_date] => 2017-02-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 128
[patent_figures_cnt] => 161
[patent_no_of_words] => 86197
[patent_no_of_claims] => 25
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 123
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15435233
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/435233 | Methods and compositions for RNA-directed target DNA modification and for RNA-directed modulation of transcription | Feb 15, 2017 | Issued |
Array
(
[id] => 11670406
[patent_doc_number] => 20170159125
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-06-08
[patent_title] => 'MICRO-RNA BIOMARKERS FOR HAEMOLYSIS AND METHODS OF USING SAME'
[patent_app_type] => utility
[patent_app_number] => 15/433774
[patent_app_country] => US
[patent_app_date] => 2017-02-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7022
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15433774
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/433774 | MICRO-RNA BIOMARKERS FOR HAEMOLYSIS AND METHODS OF USING SAME | Feb 14, 2017 | Abandoned |
Array
(
[id] => 11663773
[patent_doc_number] => 20170152493
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-06-01
[patent_title] => 'Fusion Polymerase and Method for Using the Same'
[patent_app_type] => utility
[patent_app_number] => 15/432031
[patent_app_country] => US
[patent_app_date] => 2017-02-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 30
[patent_figures_cnt] => 30
[patent_no_of_words] => 21174
[patent_no_of_claims] => 23
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15432031
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/432031 | Fusion polymerase and method for using the same | Feb 13, 2017 | Issued |
Array
(
[id] => 13037855
[patent_doc_number] => 10041051
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2018-08-07
[patent_title] => Fusion polymerase and method for using the same
[patent_app_type] => utility
[patent_app_number] => 15/432080
[patent_app_country] => US
[patent_app_date] => 2017-02-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 30
[patent_figures_cnt] => 38
[patent_no_of_words] => 19894
[patent_no_of_claims] => 22
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 102
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15432080
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/432080 | Fusion polymerase and method for using the same | Feb 13, 2017 | Issued |
Array
(
[id] => 11663799
[patent_doc_number] => 20170152518
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-06-01
[patent_title] => 'OLIGONUCLEOTIDES FOR MAKING A CHANGE IN THE SEQUENCE OF A TARGET RNA MOLECULE PRESENT IN A LIVING CELL'
[patent_app_type] => utility
[patent_app_number] => 15/430069
[patent_app_country] => US
[patent_app_date] => 2017-02-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 12
[patent_no_of_words] => 11697
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15430069
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/430069 | Method for increasing the activity of a cystic fibrosis transmembrane conductance regulator protein | Feb 9, 2017 | Issued |
Array
(
[id] => 11836725
[patent_doc_number] => 20170218444
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-08-03
[patent_title] => 'SIZE SELECTION OF DNA FOR CHROMATIN ANALYSIS'
[patent_app_type] => utility
[patent_app_number] => 15/427845
[patent_app_country] => US
[patent_app_date] => 2017-02-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 2
[patent_figures_cnt] => 2
[patent_no_of_words] => 15106
[patent_no_of_claims] => 46
[patent_no_of_ind_claims] => 6
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15427845
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/427845 | SIZE SELECTION OF DNA FOR CHROMATIN ANALYSIS | Feb 7, 2017 | Abandoned |
Array
(
[id] => 11627705
[patent_doc_number] => 20170137894
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-05-18
[patent_title] => 'Oligonucleotides and Methods for Detecting KRAS and PIK3CA Mutations'
[patent_app_type] => utility
[patent_app_number] => 15/420244
[patent_app_country] => US
[patent_app_date] => 2017-01-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 11
[patent_no_of_words] => 11670
[patent_no_of_claims] => 9
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15420244
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/420244 | Oligonucleotides and methods for detecting KRAS and PIK3CA mutations | Jan 30, 2017 | Issued |
Array
(
[id] => 11837843
[patent_doc_number] => 20170219562
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-08-03
[patent_title] => 'EPIGENETIC COMPOUND SCREENING PLATFORM'
[patent_app_type] => utility
[patent_app_number] => 15/418427
[patent_app_country] => US
[patent_app_date] => 2017-01-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 7
[patent_no_of_words] => 8486
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15418427
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/418427 | EPIGENETIC COMPOUND SCREENING PLATFORM | Jan 26, 2017 | Abandoned |
Array
(
[id] => 11604464
[patent_doc_number] => 20170121766
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-05-04
[patent_title] => 'ALTERNATIVE NUCLEOTIDE FLOWS IN SEQUENCING-BY-SYNTHESIS METHODS'
[patent_app_type] => utility
[patent_app_number] => 15/404735
[patent_app_country] => US
[patent_app_date] => 2017-01-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 8372
[patent_no_of_claims] => 6
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15404735
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/404735 | Alternative nucleotide flows in sequencing-by-synthesis methods | Jan 11, 2017 | Issued |
Array
(
[id] => 13622819
[patent_doc_number] => 20180362961
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-20
[patent_title] => METHODS AND COMPOSITIONS FOR ENHANCED NUCLEASE-MEDIATED GENOME MODIFICATION AND REDUCED OFF-TARGET SITE EFFECTS
[patent_app_type] => utility
[patent_app_number] => 16/060759
[patent_app_country] => US
[patent_app_date] => 2016-12-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 28778
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 90
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16060759
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/060759 | METHODS AND COMPOSITIONS FOR ENHANCED NUCLEASE-MEDIATED GENOME MODIFICATION AND REDUCED OFF-TARGET SITE EFFECTS | Dec 5, 2016 | Abandoned |
Array
(
[id] => 11499474
[patent_doc_number] => 20170073659
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-03-16
[patent_title] => 'NOVEL LYSYL TRNA SYNTHETASE FRAGMENT AND MICROVESICLES COMPRISING SAME'
[patent_app_type] => utility
[patent_app_number] => 15/361698
[patent_app_country] => US
[patent_app_date] => 2016-11-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 20
[patent_figures_cnt] => 20
[patent_no_of_words] => 15895
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15361698
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/361698 | NOVEL LYSYL TRNA SYNTHETASE FRAGMENT AND MICROVESICLES COMPRISING SAME | Nov 27, 2016 | Abandoned |
Array
(
[id] => 11649536
[patent_doc_number] => 20170145438
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-05-25
[patent_title] => 'Viral Vectors for Gene Editing'
[patent_app_type] => utility
[patent_app_number] => 15/347996
[patent_app_country] => US
[patent_app_date] => 2016-11-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 11008
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15347996
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/347996 | Viral Vectors for Gene Editing | Nov 9, 2016 | Abandoned |
Array
(
[id] => 12206094
[patent_doc_number] => 20180051320
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-02-22
[patent_title] => 'DEPLETION OF ABUNDANT SEQUENCES BY HYBRIDIZATION (DASH)'
[patent_app_type] => utility
[patent_app_number] => 15/348855
[patent_app_country] => US
[patent_app_date] => 2016-11-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 4
[patent_no_of_words] => 18585
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15348855
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/348855 | DEPLETION OF ABUNDANT SEQUENCES BY HYBRIDIZATION (DASH) | Nov 9, 2016 | Abandoned |
Array
(
[id] => 11492926
[patent_doc_number] => 20170067112
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-03-09
[patent_title] => 'SEQUENCES ASSOCIATED WITH TDP-43 PROTEINOPATHIES AND METHODS OF USING THE SAME'
[patent_app_type] => utility
[patent_app_number] => 15/346268
[patent_app_country] => US
[patent_app_date] => 2016-11-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 2
[patent_figures_cnt] => 2
[patent_no_of_words] => 5999
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15346268
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/346268 | Sequences associated with TDP-43 proteinopathies and methods of using the same | Nov 7, 2016 | Issued |
Array
(
[id] => 11662514
[patent_doc_number] => 20170151220
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-06-01
[patent_title] => 'IBS MICROBIOTA AND USES THEREOF'
[patent_app_type] => utility
[patent_app_number] => 15/342739
[patent_app_country] => US
[patent_app_date] => 2016-11-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 16
[patent_figures_cnt] => 16
[patent_no_of_words] => 18334
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15342739
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/342739 | IBS microbiota and uses thereof | Nov 2, 2016 | Issued |
Array
(
[id] => 11873840
[patent_doc_number] => 09745600
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2017-08-29
[patent_title] => 'Compositions and methods of engineered CRISPR-Cas9 systems using split-nexus Cas9-associated polynucleotides'
[patent_app_type] => utility
[patent_app_number] => 15/339633
[patent_app_country] => US
[patent_app_date] => 2016-10-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 22
[patent_figures_cnt] => 27
[patent_no_of_words] => 58152
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 390
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15339633
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/339633 | Compositions and methods of engineered CRISPR-Cas9 systems using split-nexus Cas9-associated polynucleotides | Oct 30, 2016 | Issued |
Array
(
[id] => 11441862
[patent_doc_number] => 20170042883
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-02-16
[patent_title] => 'Methods for Detecting and Treating Rhinovirus Infection'
[patent_app_type] => utility
[patent_app_number] => 15/333300
[patent_app_country] => US
[patent_app_date] => 2016-10-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 15
[patent_figures_cnt] => 15
[patent_no_of_words] => 20115
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 13
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15333300
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/333300 | Methods for Detecting and Treating Rhinovirus Infection | Oct 24, 2016 | Abandoned |
Array
(
[id] => 11421732
[patent_doc_number] => 20170029876
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-02-02
[patent_title] => 'METHOD FOR DETECTING, QUANTIFYING AND MAPPING DAMAGE AND/OR REPAIR OF DNA STRANDS'
[patent_app_type] => utility
[patent_app_number] => 15/295120
[patent_app_country] => US
[patent_app_date] => 2016-10-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 22313
[patent_no_of_claims] => 15
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15295120
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/295120 | METHOD FOR DETECTING, QUANTIFYING AND MAPPING DAMAGE AND/OR REPAIR OF DNA STRANDS | Oct 16, 2016 | Abandoned |
Array
(
[id] => 11400501
[patent_doc_number] => 20170021039
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-01-26
[patent_title] => 'Cancer Therapy'
[patent_app_type] => utility
[patent_app_number] => 15/287909
[patent_app_country] => US
[patent_app_date] => 2016-10-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 3045
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15287909
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/287909 | Cancer Therapy | Oct 6, 2016 | Abandoned |