
Nicole Erin Kinsey White
Examiner (ID: 18489, Phone: (571)272-9943 , Office: P/1648 )
| Most Active Art Unit | 1648 |
| Art Unit(s) | 1671, 1672, 1648 |
| Total Applications | 1130 |
| Issued Applications | 560 |
| Pending Applications | 136 |
| Abandoned Applications | 472 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 15432419
[patent_doc_number] => 20200030392
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-01-30
[patent_title] => PHAGE THERAPY
[patent_app_type] => utility
[patent_app_number] => 16/491176
[patent_app_country] => US
[patent_app_date] => 2018-03-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11428
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16491176
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/491176 | Anti-bacterial compositions and uses thereof | Mar 6, 2018 | Issued |
Array
(
[id] => 14016477
[patent_doc_number] => 20190070232
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-03-07
[patent_title] => METHODS OF CLONING PROPHAGES AND PRODUCING LYTIC PHAGE PARTICLES
[patent_app_type] => utility
[patent_app_number] => 16/080468
[patent_app_country] => US
[patent_app_date] => 2018-03-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4570
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -11
[patent_words_short_claim] => 53
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16080468
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/080468 | METHODS OF CLONING PROPHAGES AND PRODUCING LYTIC PHAGE PARTICLES | Mar 4, 2018 | Abandoned |
Array
(
[id] => 16043381
[patent_doc_number] => 10683554
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-06-16
[patent_title] => Methods and materials for detecting SNPS and administering measles virus vaccinations
[patent_app_type] => utility
[patent_app_number] => 15/907056
[patent_app_country] => US
[patent_app_date] => 2018-02-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 17
[patent_figures_cnt] => 22
[patent_no_of_words] => 16722
[patent_no_of_claims] => 6
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 249
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15907056
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/907056 | Methods and materials for detecting SNPS and administering measles virus vaccinations | Feb 26, 2018 | Issued |
Array
(
[id] => 16262473
[patent_doc_number] => 10753901
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-08-25
[patent_title] => Integrated sensor for the rapid identification of bacteria using ISFETS
[patent_app_type] => utility
[patent_app_number] => 15/901645
[patent_app_country] => US
[patent_app_date] => 2018-02-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 13
[patent_figures_cnt] => 15
[patent_no_of_words] => 6501
[patent_no_of_claims] => 24
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 56
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15901645
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/901645 | Integrated sensor for the rapid identification of bacteria using ISFETS | Feb 20, 2018 | Issued |
Array
(
[id] => 16902282
[patent_doc_number] => 20210181198
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-06-17
[patent_title] => INFLUENZA VIRUS DETECTION CHIP AND METHOD FOR DETECING INRLUENZA VIRUS THEREWITH
[patent_app_type] => utility
[patent_app_number] => 16/086322
[patent_app_country] => US
[patent_app_date] => 2018-02-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 3856
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 91
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16086322
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/086322 | Influenza virus detection chip and method for detecting influenza virus therewith | Feb 6, 2018 | Issued |
Array
(
[id] => 19152164
[patent_doc_number] => 11977072
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-05-07
[patent_title] => Solution-based plasmonic specific-binding partner assays using metallic nanostructures
[patent_app_type] => utility
[patent_app_number] => 16/479663
[patent_app_country] => US
[patent_app_date] => 2018-01-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 32
[patent_figures_cnt] => 32
[patent_no_of_words] => 16073
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 178
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16479663
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/479663 | Solution-based plasmonic specific-binding partner assays using metallic nanostructures | Jan 29, 2018 | Issued |
Array
(
[id] => 14611941
[patent_doc_number] => 10358656
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2019-07-23
[patent_title] => Oligonucleotides packaged into virus-like particles of RNA bacteriophages
[patent_app_type] => utility
[patent_app_number] => 15/872594
[patent_app_country] => US
[patent_app_date] => 2018-01-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 6
[patent_figures_cnt] => 6
[patent_no_of_words] => 17889
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 143
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15872594
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/872594 | Oligonucleotides packaged into virus-like particles of RNA bacteriophages | Jan 15, 2018 | Issued |
Array
(
[id] => 12682015
[patent_doc_number] => 20180119171
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-05-03
[patent_title] => REPLICATIVE VACCINIA VIRUS VECTOR HIV VACCINE
[patent_app_type] => utility
[patent_app_number] => 15/520183
[patent_app_country] => US
[patent_app_date] => 2018-01-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6728
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15520183
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/520183 | REPLICATIVE VACCINIA VIRUS VECTOR HIV VACCINE | Jan 11, 2018 | Abandoned |
Array
(
[id] => 15175445
[patent_doc_number] => 20190358314
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-11-28
[patent_title] => NUCLEOSIDE-MODIFIED RNA FOR INDUCING AN IMMUNE RESPONSE AGAINST ZIKA VIRUS
[patent_app_type] => utility
[patent_app_number] => 16/477258
[patent_app_country] => US
[patent_app_date] => 2018-01-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 32278
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16477258
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/477258 | Nucleoside-modified RNA for inducing an immune response against zika virus | Jan 10, 2018 | Issued |
Array
(
[id] => 15039303
[patent_doc_number] => 20190330656
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-10-31
[patent_title] => RETRO- AND LENTI-HBV HYBRID VECTORS AND CONSTRUCTS
[patent_app_type] => utility
[patent_app_number] => 16/474661
[patent_app_country] => US
[patent_app_date] => 2017-12-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 3315
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -5
[patent_words_short_claim] => 22
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16474661
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/474661 | Retro- and lenti-HBV hybrid vectors and constructs | Dec 27, 2017 | Issued |
Array
(
[id] => 13371929
[patent_doc_number] => 20180237505
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-08-23
[patent_title] => BISPECIFIC HIV-1-NEUTRALIZING ANTIBODIES
[patent_app_type] => utility
[patent_app_number] => 15/850832
[patent_app_country] => US
[patent_app_date] => 2017-12-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17076
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 206
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15850832
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/850832 | Bispecific HIV-1-neutralizing antibodies | Dec 20, 2017 | Issued |
Array
(
[id] => 13926179
[patent_doc_number] => 20190046605
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-02-14
[patent_title] => COMPOSITIONS AND METHODS TO PREVENT CANCER WITH CUPREDOXINS
[patent_app_type] => utility
[patent_app_number] => 15/837683
[patent_app_country] => US
[patent_app_date] => 2017-12-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 45468
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15837683
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/837683 | Compositions comprising cupredoxins for treating cancer | Dec 10, 2017 | Issued |
Array
(
[id] => 18462443
[patent_doc_number] => 11686729
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-06-27
[patent_title] => Bacteriophage-based electrochemical bacterial sensors, systems, and methods
[patent_app_type] => utility
[patent_app_number] => 16/464645
[patent_app_country] => US
[patent_app_date] => 2017-11-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 17
[patent_figures_cnt] => 35
[patent_no_of_words] => 21031
[patent_no_of_claims] => 22
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 326
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16464645
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/464645 | Bacteriophage-based electrochemical bacterial sensors, systems, and methods | Nov 28, 2017 | Issued |
Array
(
[id] => 12239933
[patent_doc_number] => 20180072796
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-03-15
[patent_title] => 'MAST CELL STABILIZERS FOR TREATMENT OF HYPERCYTOKINEMIA AND VIRAL INFECTION'
[patent_app_type] => utility
[patent_app_number] => 15/816461
[patent_app_country] => US
[patent_app_date] => 2017-11-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 2
[patent_figures_cnt] => 2
[patent_no_of_words] => 10749
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15816461
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/816461 | Mast cell stabilizers for treatment of hypercytokinemia and viral infection | Nov 16, 2017 | Issued |
Array
(
[id] => 14273887
[patent_doc_number] => 20190134228
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-05-09
[patent_title] => System and Method for Managing All Cancers by Disabling the Cancer Cells Ability to Reproduce
[patent_app_type] => utility
[patent_app_number] => 15/808563
[patent_app_country] => US
[patent_app_date] => 2017-11-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 21761
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -36
[patent_words_short_claim] => 32
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15808563
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/808563 | System and Method for Managing All Cancers by Disabling the Cancer Cells Ability to Reproduce | Nov 8, 2017 | Abandoned |
Array
(
[id] => 14836953
[patent_doc_number] => 20190276877
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-09-12
[patent_title] => PHAGE-BASED DETECTION OF BORRELIOSIS AND MEANS THEREFOR
[patent_app_type] => utility
[patent_app_number] => 16/346178
[patent_app_country] => US
[patent_app_date] => 2017-11-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14379
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -22
[patent_words_short_claim] => 17
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16346178
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/346178 | Phage-based detection of borreliosis and means therefor | Nov 2, 2017 | Issued |
Array
(
[id] => 14868089
[patent_doc_number] => 20190284286
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-09-19
[patent_title] => Modulation of Type I Interferons to Reactivate HIV-1 Reservoir and Enhance HIV-1 Treatment
[patent_app_type] => utility
[patent_app_number] => 16/340968
[patent_app_country] => US
[patent_app_date] => 2017-10-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 19529
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16340968
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/340968 | Modulation of Type I Interferons to Reactivate HIV-1 Reservoir and Enhance HIV-1 Treatment | Oct 24, 2017 | Abandoned |
Array
(
[id] => 14883969
[patent_doc_number] => 10422012
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2019-09-24
[patent_title] => Devices comprising bacteriophage PHI6 internal control compositions
[patent_app_type] => utility
[patent_app_number] => 15/727116
[patent_app_country] => US
[patent_app_date] => 2017-10-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 5
[patent_no_of_words] => 8506
[patent_no_of_claims] => 15
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 99
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15727116
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/727116 | Devices comprising bacteriophage PHI6 internal control compositions | Oct 5, 2017 | Issued |
Array
(
[id] => 12728800
[patent_doc_number] => 20180134767
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-05-17
[patent_title] => IDENTIFICATION OF ANTIBODIES SPECIFIC FOR LYSSAVIRUSES AND METHODS OF THEIR USE
[patent_app_type] => utility
[patent_app_number] => 15/725557
[patent_app_country] => US
[patent_app_date] => 2017-10-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12228
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -12
[patent_words_short_claim] => 74
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15725557
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/725557 | Identification of antibodies specific for lyssaviruses and methods of their use | Oct 4, 2017 | Issued |
Array
(
[id] => 16961640
[patent_doc_number] => 20210213139
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-07-15
[patent_title] => DELIVERY OF THERAPEUTIC RNAS VIA ARRDC1-MEDIATED MICROVESICLES
[patent_app_type] => utility
[patent_app_number] => 16/338969
[patent_app_country] => US
[patent_app_date] => 2017-10-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 32519
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -38
[patent_words_short_claim] => 20
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16338969
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/338969 | Delivery of therapeutic RNAs via ARRDC1-mediated microvesicles | Oct 2, 2017 | Issued |