| Application number | Title of the application | Filing Date | Status |
|---|
Array
(
[id] => 16843122
[patent_doc_number] => 11015196
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-05-25
[patent_title] => Using microRNAs to control activation status of hepatic stellate cells and to prevent fibrosis in progressive liver diseases
[patent_app_type] => utility
[patent_app_number] => 16/302940
[patent_app_country] => US
[patent_app_date] => 2017-05-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 19
[patent_no_of_words] => 29363
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 52
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16302940
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/302940 | Using microRNAs to control activation status of hepatic stellate cells and to prevent fibrosis in progressive liver diseases | May 18, 2017 | Issued |
Array
(
[id] => 14747313
[patent_doc_number] => 20190256830
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-08-22
[patent_title] => METHOD FOR CELL-SPECIFICALLY CONTROLLING NUCLEASE
[patent_app_type] => utility
[patent_app_number] => 16/313328
[patent_app_country] => US
[patent_app_date] => 2017-05-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 15806
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 29
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16313328
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/313328 | METHOD FOR CELL-SPECIFICALLY CONTROLLING NUCLEASE | May 17, 2017 | Abandoned |
Array
(
[id] => 14716219
[patent_doc_number] => 20190249173
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-08-15
[patent_title] => METHODS AND COMPOSITIONS OF BIOLOGICALLY ACTIVE AGENTS
[patent_app_type] => utility
[patent_app_number] => 16/098658
[patent_app_country] => US
[patent_app_date] => 2017-05-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 206058
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16098658
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/098658 | METHODS AND COMPOSITIONS OF BIOLOGICALLY ACTIVE AGENTS | May 2, 2017 | Abandoned |
| 15/584728 | Amplification of oligonucleotides containing non-standard nucleotides | May 1, 2017 | Abandoned |
Array
(
[id] => 14231127
[patent_doc_number] => 20190127736
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-05-02
[patent_title] => INHIBITION OF MIR-22 MIRNA BY APT-110
[patent_app_type] => utility
[patent_app_number] => 16/097012
[patent_app_country] => US
[patent_app_date] => 2017-04-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 28587
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -60
[patent_words_short_claim] => 7
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16097012
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/097012 | INHIBITION OF MIR-22 MIRNA BY APT-110 | Apr 27, 2017 | Abandoned |
Array
(
[id] => 12607284
[patent_doc_number] => 20180094258
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-04-05
[patent_title] => METHOD FOR RECOMBINANT PROTEIN PRODUCTION IN MAMMALIAN CELLS
[patent_app_type] => utility
[patent_app_number] => 15/495056
[patent_app_country] => US
[patent_app_date] => 2017-04-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8498
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -11
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15495056
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/495056 | METHOD FOR RECOMBINANT PROTEIN PRODUCTION IN MAMMALIAN CELLS | Apr 23, 2017 | Abandoned |
Array
(
[id] => 15915907
[patent_doc_number] => 10655184
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-05-19
[patent_title] => Methods and compositions involving miR-135b for distinguishing pancreatic cancer from benign pancreatic disease
[patent_app_type] => utility
[patent_app_number] => 15/491399
[patent_app_country] => US
[patent_app_date] => 2017-04-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 20
[patent_figures_cnt] => 20
[patent_no_of_words] => 35003
[patent_no_of_claims] => 6
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 100
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15491399
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/491399 | Methods and compositions involving miR-135b for distinguishing pancreatic cancer from benign pancreatic disease | Apr 18, 2017 | Issued |
Array
(
[id] => 15590333
[patent_doc_number] => 20200071701
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-03-05
[patent_title] => Method of Modulating the Number and the Distribution of Tumor-Infiltrating Leukocytes in Tumors
[patent_app_type] => utility
[patent_app_number] => 16/093645
[patent_app_country] => US
[patent_app_date] => 2017-04-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 36453
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -27
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16093645
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/093645 | Method of modulating the number and the distribution of tumor-infiltrating leukocytes in tumors | Apr 17, 2017 | Issued |
Array
(
[id] => 11836646
[patent_doc_number] => 20170218365
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-08-03
[patent_title] => 'METHODS FOR MALIGNANT TUMORS WITH RNAI MOLECULES TARGETED TO HSP47'
[patent_app_type] => utility
[patent_app_number] => 15/489650
[patent_app_country] => US
[patent_app_date] => 2017-04-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 40
[patent_figures_cnt] => 40
[patent_no_of_words] => 17050
[patent_no_of_claims] => 22
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15489650
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/489650 | METHODS FOR MALIGNANT TUMORS WITH RNAI MOLECULES TARGETED TO HSP47 | Apr 16, 2017 | Abandoned |
Array
(
[id] => 11990452
[patent_doc_number] => 20170294608
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-10-12
[patent_title] => 'SELF-ASSEMBLED, ELECTRONICALLY-FUNCTIONAL NUCLEIC ACID NANOSTRUCTURES AND NETWORKS BASED ON THE USE OF ORTHOGONAL BASE PAIRS'
[patent_app_type] => utility
[patent_app_number] => 15/485016
[patent_app_country] => US
[patent_app_date] => 2017-04-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 14
[patent_figures_cnt] => 14
[patent_no_of_words] => 3699
[patent_no_of_claims] => 17
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15485016
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/485016 | SELF-ASSEMBLED, ELECTRONICALLY-FUNCTIONAL NUCLEIC ACID NANOSTRUCTURES AND NETWORKS BASED ON THE USE OF ORTHOGONAL BASE PAIRS | Apr 10, 2017 | Abandoned |
Array
(
[id] => 12002171
[patent_doc_number] => 20170306324
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-10-26
[patent_title] => 'NOVEL TETRAGALNAC AND PEPTIDE CONTAINING CONJUGATES AND METHODS FOR DELIVERY OF OLIGONUCLEOTIDES'
[patent_app_type] => utility
[patent_app_number] => 15/481942
[patent_app_country] => US
[patent_app_date] => 2017-04-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 200
[patent_figures_cnt] => 200
[patent_no_of_words] => 41216
[patent_no_of_claims] => 22
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15481942
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/481942 | Tetragalnac and peptide containing conjugates and methods for delivery of oligonucleotides | Apr 6, 2017 | Issued |
Array
(
[id] => 13079359
[patent_doc_number] => 10059737
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2018-08-28
[patent_title] => Molecular recognition systems with pyrimidine analog pairing
[patent_app_type] => utility
[patent_app_number] => 15/461073
[patent_app_country] => US
[patent_app_date] => 2017-03-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 7652
[patent_no_of_claims] => 3
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 136
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15461073
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/461073 | Molecular recognition systems with pyrimidine analog pairing | Mar 15, 2017 | Issued |
Array
(
[id] => 11963848
[patent_doc_number] => 20170268001
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-09-21
[patent_title] => 'RNAS WITH TUMOR RADIO/CHEMO-SENSITIZING AND IMMUNOMODULATORY PROPERTIES AND METHODS OF THEIR PREPARATION AND APPLICATION'
[patent_app_type] => utility
[patent_app_number] => 15/459602
[patent_app_country] => US
[patent_app_date] => 2017-03-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 83
[patent_figures_cnt] => 83
[patent_no_of_words] => 56184
[patent_no_of_claims] => 27
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15459602
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/459602 | RNAS WITH TUMOR RADIO/CHEMO-SENSITIZING AND IMMUNOMODULATORY PROPERTIES AND METHODS OF THEIR PREPARATION AND APPLICATION | Mar 14, 2017 | Abandoned |
Array
(
[id] => 14016621
[patent_doc_number] => 20190070304
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-03-07
[patent_title] => BIODEGRADABLE VECTORS FOR EFFICIENT RNA DELIVERY
[patent_app_type] => utility
[patent_app_number] => 16/084220
[patent_app_country] => US
[patent_app_date] => 2017-03-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17144
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16084220
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/084220 | Biodegradable vectors for efficient RNA delivery | Mar 9, 2017 | Issued |
Array
(
[id] => 12177434
[patent_doc_number] => 20180036369
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-02-08
[patent_title] => 'COMPOSITIONS AND METHODS OF ALTERING CHOLESTEROL LEVELS'
[patent_app_type] => utility
[patent_app_number] => 15/456393
[patent_app_country] => US
[patent_app_date] => 2017-03-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 21
[patent_figures_cnt] => 21
[patent_no_of_words] => 77260
[patent_no_of_claims] => 24
[patent_no_of_ind_claims] => 6
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15456393
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/456393 | COMPOSITIONS AND METHODS OF ALTERING CHOLESTEROL LEVELS | Mar 9, 2017 | Abandoned |
Array
(
[id] => 11950654
[patent_doc_number] => 20170254805
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-09-07
[patent_title] => 'BIOCHEMICAL MOLECULE DETECTION SENSOR AND METHOD FOR DETECTING SPECIFIC MOLECULE USING MULTI-WAVELENGTH FLUORESCENCE'
[patent_app_type] => utility
[patent_app_number] => 15/449049
[patent_app_country] => US
[patent_app_date] => 2017-03-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 14
[patent_figures_cnt] => 14
[patent_no_of_words] => 7170
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15449049
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/449049 | BIOCHEMICAL MOLECULE DETECTION SENSOR AND METHOD FOR DETECTING SPECIFIC MOLECULE USING MULTI-WAVELENGTH FLUORESCENCE | Mar 2, 2017 | Abandoned |
Array
(
[id] => 13987191
[patent_doc_number] => 20190062753
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-02-28
[patent_title] => Read Through Of Truncated Proteins In Premature Termination Codon Diseases Using An Optimized Genetic Codon Expansion System
[patent_app_type] => utility
[patent_app_number] => 16/083766
[patent_app_country] => US
[patent_app_date] => 2017-03-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7388
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16083766
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/083766 | Read Through Of Truncated Proteins In Premature Termination Codon Diseases Using An Optimized Genetic Codon Expansion System | Mar 2, 2017 | Abandoned |
Array
(
[id] => 16351807
[patent_doc_number] => 10792299
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-10-06
[patent_title] => Methods and compositions for treating malignant tumors associated with kras mutation
[patent_app_type] => utility
[patent_app_number] => 15/434318
[patent_app_country] => US
[patent_app_date] => 2017-02-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 14
[patent_figures_cnt] => 14
[patent_no_of_words] => 17669
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 92
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15434318
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/434318 | Methods and compositions for treating malignant tumors associated with kras mutation | Feb 15, 2017 | Issued |
Array
(
[id] => 13703283
[patent_doc_number] => 20170362596
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-12-21
[patent_title] => METHODS AND MEANS OF GENERATING IL-17 ASSOCIATED ANTITUMOR EFFECTOR CELLS BY INHIBITION OF NR2F6 INHIBITION
[patent_app_type] => utility
[patent_app_number] => 15/431681
[patent_app_country] => US
[patent_app_date] => 2017-02-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6082
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 38
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15431681
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/431681 | Methods and means of generating IL-17 associated antitumor effector cells by inhibition of NR2F6 inhibition | Feb 12, 2017 | Issued |
Array
(
[id] => 12733150
[patent_doc_number] => 20180136217
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-05-17
[patent_title] => APTAMER SPECIFIC TO OVARIAN CANCER AND DETECTION METHOD FOR OVARIAN CANCER
[patent_app_type] => utility
[patent_app_number] => 15/424896
[patent_app_country] => US
[patent_app_date] => 2017-02-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 3528
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 30
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15424896
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/424896 | Aptamer specific to ovarian cancer and detection method for ovarian cancer | Feb 5, 2017 | Issued |