
Richard A. Schnizer
Examiner (ID: 700, Phone: (571)272-0762 , Office: P/1674 )
| Most Active Art Unit | 1635 |
| Art Unit(s) | 1635, 1632, 1674 |
| Total Applications | 1559 |
| Issued Applications | 675 |
| Pending Applications | 181 |
| Abandoned Applications | 710 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 13899145
[patent_doc_number] => 20190038777
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-02-07
[patent_title] => INJECTION OF SINGLE-STRANDED OR SELF-COMPLEMENTARY ADENO-ASSOCIATED VIRUS 9 INTO THE CEREBROSPINAL FLUID
[patent_app_type] => utility
[patent_app_number] => 16/075122
[patent_app_country] => US
[patent_app_date] => 2017-01-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 20237
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16075122
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/075122 | Injection of single-stranded or self-complementary adeno-associated virus 9 into the cerebrospinal fluid | Jan 24, 2017 | Issued |
Array
(
[id] => 11604413
[patent_doc_number] => 20170121714
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-05-04
[patent_title] => 'METHOD FOR PRODUCING LIPID PARTICLES AND NUCLEIC ACID DELIVERY CARRIER HAVING LIPID PARTICLES'
[patent_app_type] => utility
[patent_app_number] => 15/405983
[patent_app_country] => US
[patent_app_date] => 2017-01-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 1
[patent_figures_cnt] => 1
[patent_no_of_words] => 6645
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15405983
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/405983 | METHOD FOR PRODUCING LIPID PARTICLES AND NUCLEIC ACID DELIVERY CARRIER HAVING LIPID PARTICLES | Jan 12, 2017 | Abandoned |
Array
(
[id] => 12425073
[patent_doc_number] => 09974862
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2018-05-22
[patent_title] => Lipid particles and nucleic acid delivery carrier
[patent_app_type] => utility
[patent_app_number] => 15/406232
[patent_app_country] => US
[patent_app_date] => 2017-01-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 3
[patent_figures_cnt] => 4
[patent_no_of_words] => 5392
[patent_no_of_claims] => 8
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 133
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15406232
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/406232 | Lipid particles and nucleic acid delivery carrier | Jan 12, 2017 | Issued |
Array
(
[id] => 12092805
[patent_doc_number] => 20170349897
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-12-07
[patent_title] => 'COMPOSITIONS FOR MODULATING C9ORF72 EXPRESSION'
[patent_app_type] => utility
[patent_app_number] => 15/404979
[patent_app_country] => US
[patent_app_date] => 2017-01-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 29504
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15404979
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/404979 | Compositions for modulating C9ORF72 expression | Jan 11, 2017 | Issued |
Array
(
[id] => 11647740
[patent_doc_number] => 20170143641
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-05-25
[patent_title] => 'CELL-TARGETING NANOPARTICLES COMPRISING POLYNUCLEOTIDE AGENTS AND USES THEREOF'
[patent_app_type] => utility
[patent_app_number] => 15/402444
[patent_app_country] => US
[patent_app_date] => 2017-01-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 11
[patent_no_of_words] => 16080
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15402444
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/402444 | Cell-targeting nanoparticles comprising polynucleotide agents and uses thereof | Jan 9, 2017 | Issued |
Array
(
[id] => 13714497
[patent_doc_number] => 20170368203
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-12-28
[patent_title] => Compositions For Enhancing Transport Of Molecules Into Cells
[patent_app_type] => utility
[patent_app_number] => 15/402449
[patent_app_country] => US
[patent_app_date] => 2017-01-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18760
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -7
[patent_words_short_claim] => 45
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15402449
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/402449 | Compositions for enhancing transport of molecules into cells | Jan 9, 2017 | Issued |
Array
(
[id] => 12729877
[patent_doc_number] => 20180135126
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-05-17
[patent_title] => METHODS OF DETECTING miRNA
[patent_app_type] => utility
[patent_app_number] => 15/400157
[patent_app_country] => US
[patent_app_date] => 2017-01-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8199
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 86
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15400157
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/400157 | METHODS OF DETECTING miRNA | Jan 5, 2017 | Abandoned |
Array
(
[id] => 14119795
[patent_doc_number] => 10246747
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2019-04-02
[patent_title] => Methods of using miRNA from bodily fluids for early detection and monitoring of mild cognitive impairment (MCI) and Alzheimer's disease (AD)
[patent_app_type] => utility
[patent_app_number] => 15/390110
[patent_app_country] => US
[patent_app_date] => 2016-12-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 53
[patent_figures_cnt] => 102
[patent_no_of_words] => 17148
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 380
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15390110
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/390110 | Methods of using miRNA from bodily fluids for early detection and monitoring of mild cognitive impairment (MCI) and Alzheimer's disease (AD) | Dec 22, 2016 | Issued |
Array
(
[id] => 15455019
[patent_doc_number] => 20200040334
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-02-06
[patent_title] => COMPOSITIONS AND METHODS FOR GENE EDITING
[patent_app_type] => utility
[patent_app_number] => 16/064435
[patent_app_country] => US
[patent_app_date] => 2016-12-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 61105
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16064435
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/064435 | COMPOSITIONS AND METHODS FOR GENE EDITING | Dec 19, 2016 | Abandoned |
Array
(
[id] => 11704570
[patent_doc_number] => 20170173069
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-06-22
[patent_title] => 'METHODS OF NUCLEOTIDE AND GENE DELIVERY USING MEMBRANE TRANSPORT MECHANISMS'
[patent_app_type] => utility
[patent_app_number] => 15/379997
[patent_app_country] => US
[patent_app_date] => 2016-12-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 4
[patent_no_of_words] => 8608
[patent_no_of_claims] => 27
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15379997
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/379997 | METHODS OF NUCLEOTIDE AND GENE DELIVERY USING MEMBRANE TRANSPORT MECHANISMS | Dec 14, 2016 | Abandoned |
Array
(
[id] => 11514592
[patent_doc_number] => 20170081666
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-03-23
[patent_title] => 'MICRORNA-198 AS A TUMOR SUPPRESSOR IN OVARIAN CANCER'
[patent_app_type] => utility
[patent_app_number] => 15/372759
[patent_app_country] => US
[patent_app_date] => 2016-12-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 39
[patent_figures_cnt] => 39
[patent_no_of_words] => 30447
[patent_no_of_claims] => 25
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15372759
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/372759 | MICRORNA-198 AS A TUMOR SUPPRESSOR IN OVARIAN CANCER | Dec 7, 2016 | Abandoned |
Array
(
[id] => 11664516
[patent_doc_number] => 20170153235
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-06-01
[patent_title] => 'APTAMER FOR SPECIFICALLY DETECTING PATULIN AND PATULIN DETECTION METHOD USING THE SAME'
[patent_app_type] => utility
[patent_app_number] => 15/349020
[patent_app_country] => US
[patent_app_date] => 2016-11-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 15
[patent_figures_cnt] => 15
[patent_no_of_words] => 3692
[patent_no_of_claims] => 8
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15349020
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/349020 | APTAMER FOR SPECIFICALLY DETECTING PATULIN AND PATULIN DETECTION METHOD USING THE SAME | Nov 10, 2016 | Abandoned |
Array
(
[id] => 11604409
[patent_doc_number] => 20170121711
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-05-04
[patent_title] => 'miRNAs USEFUL FOR IDENTIFYING TARGETS ASSOCIATED WITH CANCER'
[patent_app_type] => utility
[patent_app_number] => 15/338704
[patent_app_country] => US
[patent_app_date] => 2016-10-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 2
[patent_figures_cnt] => 2
[patent_no_of_words] => 3947
[patent_no_of_claims] => 17
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15338704
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/338704 | miRNAs useful for identifying targets associated with cancer | Oct 30, 2016 | Issued |
Array
(
[id] => 12172252
[patent_doc_number] => 09890381
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2018-02-13
[patent_title] => 'Antisense nucleic acids'
[patent_app_type] => utility
[patent_app_number] => 15/339069
[patent_app_country] => US
[patent_app_date] => 2016-10-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 31
[patent_figures_cnt] => 31
[patent_no_of_words] => 28835
[patent_no_of_claims] => 9
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 88
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15339069
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/339069 | Antisense nucleic acids | Oct 30, 2016 | Issued |
Array
(
[id] => 11443588
[patent_doc_number] => 20170044609
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-02-16
[patent_title] => 'REACTIVATION OF X CHROMOSOME GENES'
[patent_app_type] => utility
[patent_app_number] => 15/336748
[patent_app_country] => US
[patent_app_date] => 2016-10-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 72
[patent_figures_cnt] => 72
[patent_no_of_words] => 26966
[patent_no_of_claims] => 24
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15336748
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/336748 | REACTIVATION OF X CHROMOSOME GENES | Oct 26, 2016 | Abandoned |
Array
(
[id] => 13354581
[patent_doc_number] => 20180228830
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-08-16
[patent_title] => NUCLEIC ACID COMPLEX HAVING AT LEAST ONE BULGE STRUCTURE
[patent_app_type] => utility
[patent_app_number] => 15/749831
[patent_app_country] => US
[patent_app_date] => 2016-10-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 24883
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -60
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15749831
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/749831 | NUCLEIC ACID COMPLEX HAVING AT LEAST ONE BULGE STRUCTURE | Oct 20, 2016 | Abandoned |
Array
(
[id] => 13479647
[patent_doc_number] => 20180291366
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-10-11
[patent_title] => A METHOD FOR ALTERING THE FUNCTIONAL STATE OF MRNA ALLOWING ITS SELECTIVE AND SPECIFIC RECOGNITION
[patent_app_type] => utility
[patent_app_number] => 15/768586
[patent_app_country] => US
[patent_app_date] => 2016-10-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5582
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -11
[patent_words_short_claim] => 97
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15768586
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/768586 | Method for altering the functional state of mRNA allowing its selective and specific recognition | Oct 11, 2016 | Issued |
Array
(
[id] => 12286777
[patent_doc_number] => 09932586
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2018-04-03
[patent_title] => Compositions and methods for inhibiting gene expression of LPA
[patent_app_type] => utility
[patent_app_number] => 15/281309
[patent_app_country] => US
[patent_app_date] => 2016-09-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 3
[patent_figures_cnt] => 6
[patent_no_of_words] => 32304
[patent_no_of_claims] => 39
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 61
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15281309
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/281309 | Compositions and methods for inhibiting gene expression of LPA | Sep 29, 2016 | Issued |
Array
(
[id] => 12609744
[patent_doc_number] => 20180095078
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-04-05
[patent_title] => METHOD OF MULTIPLEX IMMUNOASSAYS UTILIZING DIFFERENTIAL AFFINITY AND METHODS FOR SYNTHESIZING APTAMER-BASED REAGENTS FOR MULTIPLEX IMMUNOASSAYS
[patent_app_type] => utility
[patent_app_number] => 15/281077
[patent_app_country] => US
[patent_app_date] => 2016-09-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14210
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -24
[patent_words_short_claim] => 153
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15281077
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/281077 | Method of multiplex immunoassays utilizing differential affinity and methods for synthesizing aptamer-based reagents for multiplex immunoassays | Sep 29, 2016 | Issued |
Array
(
[id] => 12240158
[patent_doc_number] => 20180073021
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-03-15
[patent_title] => 'RECOMBINANT PROTEIN-BASED METHOD FOR THE DELIVERY OF SILENCER RNA TO TARGET THE BRAIN'
[patent_app_type] => utility
[patent_app_number] => 15/266642
[patent_app_country] => US
[patent_app_date] => 2016-09-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 7
[patent_no_of_words] => 4537
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15266642
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/266642 | Recombinant protein-based method for the delivery of silencer RNA to target the brain | Sep 14, 2016 | Issued |