
Richard A. Schnizer
Examiner (ID: 700, Phone: (571)272-0762 , Office: P/1674 )
| Most Active Art Unit | 1635 |
| Art Unit(s) | 1635, 1632, 1674 |
| Total Applications | 1559 |
| Issued Applications | 675 |
| Pending Applications | 181 |
| Abandoned Applications | 710 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 9916697
[patent_doc_number] => 20150071902
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-03-12
[patent_title] => 'Extended DNA-Sensing GRNAS'
[patent_app_type] => utility
[patent_app_number] => 14/326361
[patent_app_country] => US
[patent_app_date] => 2014-07-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 12
[patent_no_of_words] => 16603
[patent_no_of_claims] => 25
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14326361
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/326361 | Extended DNA-sensing GRNAS | Jul 7, 2014 | Issued |
Array
(
[id] => 10967002
[patent_doc_number] => 20140370034
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2014-12-18
[patent_title] => 'SDF-1 Binding Nucleic Acids and the Use Thereof'
[patent_app_type] => utility
[patent_app_number] => 14/324199
[patent_app_country] => US
[patent_app_date] => 2014-07-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 50
[patent_figures_cnt] => 50
[patent_no_of_words] => 53345
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14324199
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/324199 | SDF-1 Binding Nucleic Acids and the Use Thereof | Jul 5, 2014 | Abandoned |
Array
(
[id] => 11499503
[patent_doc_number] => 20170073689
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-03-16
[patent_title] => 'MODULATORS OF GROWTH HORMONE RECEPTOR'
[patent_app_type] => utility
[patent_app_number] => 14/902446
[patent_app_country] => US
[patent_app_date] => 2014-07-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 69668
[patent_no_of_claims] => 25
[patent_no_of_ind_claims] => 8
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14902446
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/902446 | MODULATORS OF GROWTH HORMONE RECEPTOR | Jun 30, 2014 | Abandoned |
Array
(
[id] => 10974290
[patent_doc_number] => 20140377324
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2014-12-25
[patent_title] => 'Pharmaceutical Composition Comprising miRNA-100 And Its Use In The Modulation of Blood Vessel Growth and Endothelial Inflammation'
[patent_app_type] => utility
[patent_app_number] => 14/320324
[patent_app_country] => US
[patent_app_date] => 2014-06-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 16
[patent_figures_cnt] => 16
[patent_no_of_words] => 9691
[patent_no_of_claims] => 23
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14320324
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/320324 | Pharmaceutical Composition Comprising miRNA-100 And Its Use In The Modulation of Blood Vessel Growth and Endothelial Inflammation | Jun 29, 2014 | Abandoned |
Array
(
[id] => 11836738
[patent_doc_number] => 20170218454
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-08-03
[patent_title] => 'Products and Methods Relating to Micro RNAS and Cancer'
[patent_app_type] => utility
[patent_app_number] => 14/901707
[patent_app_country] => US
[patent_app_date] => 2014-06-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 26
[patent_figures_cnt] => 26
[patent_no_of_words] => 58335
[patent_no_of_claims] => 27
[patent_no_of_ind_claims] => 15
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14901707
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/901707 | Products and Methods Relating to Micro RNAS and Cancer | Jun 25, 2014 | Abandoned |
Array
(
[id] => 11888229
[patent_doc_number] => 09758782
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2017-09-12
[patent_title] => 'Inhibition of microRNA for treatment of sepsis'
[patent_app_type] => utility
[patent_app_number] => 14/901549
[patent_app_country] => US
[patent_app_date] => 2014-06-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 32
[patent_no_of_words] => 17796
[patent_no_of_claims] => 7
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 35
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14901549
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/901549 | Inhibition of microRNA for treatment of sepsis | Jun 24, 2014 | Issued |
Array
(
[id] => 10975493
[patent_doc_number] => 20140378528
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2014-12-25
[patent_title] => 'BIOMARKERS OF MIR-34 ACTIVITY'
[patent_app_type] => utility
[patent_app_number] => 14/313471
[patent_app_country] => US
[patent_app_date] => 2014-06-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 24
[patent_figures_cnt] => 24
[patent_no_of_words] => 12291
[patent_no_of_claims] => 35
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14313471
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/313471 | BIOMARKERS OF MIR-34 ACTIVITY | Jun 23, 2014 | Abandoned |
Array
(
[id] => 10797781
[patent_doc_number] => 20160143938
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-05-26
[patent_title] => 'Methods and compositions for modulating cancer stem cells'
[patent_app_type] => utility
[patent_app_number] => 14/899549
[patent_app_country] => US
[patent_app_date] => 2014-06-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 43557
[patent_no_of_claims] => 98
[patent_no_of_ind_claims] => 28
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14899549
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/899549 | Methods and compositions for modulating cancer stem cells | Jun 16, 2014 | Issued |
Array
(
[id] => 10799458
[patent_doc_number] => 20160145615
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-05-26
[patent_title] => 'AGONISTS OF DDAH1 FOR TREATING ENDOTHELIAL DYSFUNCTION'
[patent_app_type] => utility
[patent_app_number] => 14/899247
[patent_app_country] => US
[patent_app_date] => 2014-06-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 14
[patent_figures_cnt] => 14
[patent_no_of_words] => 15659
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 9
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14899247
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/899247 | AGONISTS OF DDAH1 FOR TREATING ENDOTHELIAL DYSFUNCTION | Jun 16, 2014 | Abandoned |
Array
(
[id] => 10784426
[patent_doc_number] => 20160130583
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-05-12
[patent_title] => 'DOUBLE-STRANDED ANTISENSE NUCLEIC ACID WITH EXON-SKIPPING EFFECT'
[patent_app_type] => utility
[patent_app_number] => 14/898630
[patent_app_country] => US
[patent_app_date] => 2014-06-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 11
[patent_no_of_words] => 15410
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14898630
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/898630 | Double-stranded antisense nucleic acid with exon-skipping effect | Jun 15, 2014 | Issued |
Array
(
[id] => 10784399
[patent_doc_number] => 20160130555
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-05-12
[patent_title] => 'METHODS FOR MATURING CARDIOMYOCYTES AND USES THEREOF'
[patent_app_type] => utility
[patent_app_number] => 14/897403
[patent_app_country] => US
[patent_app_date] => 2014-06-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 43
[patent_figures_cnt] => 43
[patent_no_of_words] => 28990
[patent_no_of_claims] => 39
[patent_no_of_ind_claims] => 22
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14897403
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/897403 | Methods for maturing cardiomyocytes and uses thereof | Jun 11, 2014 | Issued |
Array
(
[id] => 11011293
[patent_doc_number] => 20160208246
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-07-21
[patent_title] => 'COMPOSITIONS AND METHODS FOR TREATING A HEMATOLOGICAL MALIGNANCY ASSOCIATED WITH AN ALTERED RUNX1 ACTIVITY OR EXPRESSION'
[patent_app_type] => utility
[patent_app_number] => 14/897281
[patent_app_country] => US
[patent_app_date] => 2014-06-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 25
[patent_figures_cnt] => 25
[patent_no_of_words] => 51650
[patent_no_of_claims] => 29
[patent_no_of_ind_claims] => 10
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14897281
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/897281 | COMPOSITIONS AND METHODS FOR TREATING A HEMATOLOGICAL MALIGNANCY ASSOCIATED WITH AN ALTERED RUNX1 ACTIVITY OR EXPRESSION | Jun 9, 2014 | Abandoned |
Array
(
[id] => 10960465
[patent_doc_number] => 20140363493
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2014-12-11
[patent_title] => 'LIPID NANOPARTICLES FOR TARGETED siRNA DELIVERY'
[patent_app_type] => utility
[patent_app_number] => 14/299194
[patent_app_country] => US
[patent_app_date] => 2014-06-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 15
[patent_figures_cnt] => 15
[patent_no_of_words] => 7229
[patent_no_of_claims] => 24
[patent_no_of_ind_claims] => 5
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14299194
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/299194 | LIPID NANOPARTICLES FOR TARGETED siRNA DELIVERY | Jun 8, 2014 | Abandoned |
Array
(
[id] => 11025432
[patent_doc_number] => 20160222387
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-08-04
[patent_title] => 'ANTI-TUMOR THERAPY'
[patent_app_type] => utility
[patent_app_number] => 14/893690
[patent_app_country] => US
[patent_app_date] => 2014-05-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 18
[patent_figures_cnt] => 18
[patent_no_of_words] => 15756
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 5
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14893690
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/893690 | Anti-tumor therapy | May 20, 2014 | Issued |
Array
(
[id] => 9799534
[patent_doc_number] => 20150011478
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-01-08
[patent_title] => 'CMV GENE PRODUCTS PROMOTE CANCER STEM CELL GROWTH'
[patent_app_type] => utility
[patent_app_number] => 14/270094
[patent_app_country] => US
[patent_app_date] => 2014-05-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 26
[patent_figures_cnt] => 26
[patent_no_of_words] => 23024
[patent_no_of_claims] => 17
[patent_no_of_ind_claims] => 5
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14270094
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/270094 | CMV GENE PRODUCTS PROMOTE CANCER STEM CELL GROWTH | May 4, 2014 | Abandoned |
Array
(
[id] => 10515990
[patent_doc_number] => 09243026
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2016-01-26
[patent_title] => 'ENA nucleic acid pharmaceuticals capable of modifying splicing of mRNA precursors'
[patent_app_type] => utility
[patent_app_number] => 14/258663
[patent_app_country] => US
[patent_app_date] => 2014-04-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 22
[patent_figures_cnt] => 22
[patent_no_of_words] => 85988
[patent_no_of_claims] => 15
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 55
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14258663
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/258663 | ENA nucleic acid pharmaceuticals capable of modifying splicing of mRNA precursors | Apr 21, 2014 | Issued |
Array
(
[id] => 10226313
[patent_doc_number] => 20150111306
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-04-23
[patent_title] => 'HEMOGLOBIN A1c-SPECIFIC APTAMER, HEMOGLOBIN-SPECIFIC APTAMER, AND APPLICATIONS THEREOF'
[patent_app_type] => utility
[patent_app_number] => 14/225081
[patent_app_country] => US
[patent_app_date] => 2014-03-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 10
[patent_figures_cnt] => 10
[patent_no_of_words] => 5344
[patent_no_of_claims] => 15
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14225081
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/225081 | Hemoglobin A1c-specific aptamer, hemoglobin-specific aptamer, and applications thereof | Mar 24, 2014 | Issued |
Array
(
[id] => 9772432
[patent_doc_number] => 20140296095
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2014-10-02
[patent_title] => 'Spatially Selective Release of Aptamer-Captured Cells by Temperature Mediation'
[patent_app_type] => utility
[patent_app_number] => 14/223767
[patent_app_country] => US
[patent_app_date] => 2014-03-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 20
[patent_figures_cnt] => 20
[patent_no_of_words] => 7840
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14223767
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/223767 | Spatially Selective Release of Aptamer-Captured Cells by Temperature Mediation | Mar 23, 2014 | Abandoned |
Array
(
[id] => 9757448
[patent_doc_number] => 20140288150
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2014-09-25
[patent_title] => 'DENDRONIZED POLYMERS FOR NUCLEIC ACID DELIVERY'
[patent_app_type] => utility
[patent_app_number] => 14/221249
[patent_app_country] => US
[patent_app_date] => 2014-03-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 17
[patent_figures_cnt] => 17
[patent_no_of_words] => 16801
[patent_no_of_claims] => 22
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14221249
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/221249 | Dendronized polymers for nucleic acid delivery | Mar 19, 2014 | Issued |
Array
(
[id] => 14454657
[patent_doc_number] => 10323281
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2019-06-18
[patent_title] => Kits and methods for evaluating, selecting and characterizing tissue culture models using micro-RNA profiles
[patent_app_type] => utility
[patent_app_number] => 14/777811
[patent_app_country] => US
[patent_app_date] => 2014-03-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 22
[patent_figures_cnt] => 22
[patent_no_of_words] => 9347
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 366
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14777811
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/777811 | Kits and methods for evaluating, selecting and characterizing tissue culture models using micro-RNA profiles | Mar 19, 2014 | Issued |