
Richard A. Schnizer
Examiner (ID: 700, Phone: (571)272-0762 , Office: P/1674 )
| Most Active Art Unit | 1635 |
| Art Unit(s) | 1635, 1632, 1674 |
| Total Applications | 1559 |
| Issued Applications | 675 |
| Pending Applications | 181 |
| Abandoned Applications | 710 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 16429738
[patent_doc_number] => 10829812
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2020-11-10
[patent_title] => Amplification of oligonucleotides containing non-standard nucleotides
[patent_app_type] => utility
[patent_app_number] => 16/216266
[patent_app_country] => US
[patent_app_date] => 2018-12-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 8232
[patent_no_of_claims] => 3
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 249
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16216266
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/216266 | Amplification of oligonucleotides containing non-standard nucleotides | Dec 10, 2018 | Issued |
Array
(
[id] => 14099117
[patent_doc_number] => 20190091234
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-03-28
[patent_title] => GAMMA-SECRETASE INHIBITION REDUCE APOC3 LEVELS AND PLASMA TRIGLYCERIDES
[patent_app_type] => utility
[patent_app_number] => 16/212174
[patent_app_country] => US
[patent_app_date] => 2018-12-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11223
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -33
[patent_words_short_claim] => 26
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16212174
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/212174 | GAMMA-SECRETASE INHIBITION REDUCE APOC3 LEVELS AND PLASMA TRIGLYCERIDES | Dec 5, 2018 | Abandoned |
Array
(
[id] => 16635450
[patent_doc_number] => 10913946
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-02-09
[patent_title] => RNA modulating oligonucleotides with improved characteristics for the treatment of Duchenne and Becker muscular dystrophy
[patent_app_type] => utility
[patent_app_number] => 16/201951
[patent_app_country] => US
[patent_app_date] => 2018-11-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 18
[patent_no_of_words] => 50429
[patent_no_of_claims] => 3
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 30
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16201951
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/201951 | RNA modulating oligonucleotides with improved characteristics for the treatment of Duchenne and Becker muscular dystrophy | Nov 26, 2018 | Issued |
Array
(
[id] => 14072885
[patent_doc_number] => 20190085330
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-03-21
[patent_title] => miRNAs USEFUL FOR IDENTIFYING TARGETS ASSOCIATED WITH CANCER
[patent_app_type] => utility
[patent_app_number] => 16/199326
[patent_app_country] => US
[patent_app_date] => 2018-11-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 3185
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 137
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16199326
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/199326 | miRNAs USEFUL FOR IDENTIFYING TARGETS ASSOCIATED WITH CANCER | Nov 25, 2018 | Abandoned |
Array
(
[id] => 14345409
[patent_doc_number] => 20190154677
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-05-23
[patent_title] => METHOD OF MULTIPLEX IMMUNOASSAYS UTILIZING DIFFERENTIAL AFFINITY AND METHODS FOR SYNTHESIZING APTAMER-BASED REAGENTS FOR MULTIPLEX IMMUNOASSAYS
[patent_app_type] => utility
[patent_app_number] => 16/198778
[patent_app_country] => US
[patent_app_date] => 2018-11-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14257
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 336
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16198778
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/198778 | Method of multiplex immunoassays utilizing differential affinity and methods for synthesizing aptamer-based reagents for multiplex immunoassays | Nov 21, 2018 | Issued |
Array
(
[id] => 16549969
[patent_doc_number] => 10883118
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-01-05
[patent_title] => Agents for improved delivery of nucleic acids to eukaryotic cells
[patent_app_type] => utility
[patent_app_number] => 16/197989
[patent_app_country] => US
[patent_app_date] => 2018-11-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 4
[patent_no_of_words] => 9846
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 56
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16197989
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/197989 | Agents for improved delivery of nucleic acids to eukaryotic cells | Nov 20, 2018 | Issued |
Array
(
[id] => 14019371
[patent_doc_number] => 20190071679
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-03-07
[patent_title] => ANTI-TUMOR THERAPY
[patent_app_type] => utility
[patent_app_number] => 16/179577
[patent_app_country] => US
[patent_app_date] => 2018-11-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 15143
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 65
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16179577
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/179577 | ANTI-TUMOR THERAPY | Nov 1, 2018 | Abandoned |
Array
(
[id] => 14159193
[patent_doc_number] => 20190106699
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-04-11
[patent_title] => siRNA Targeting LDHA
[patent_app_type] => utility
[patent_app_number] => 16/171166
[patent_app_country] => US
[patent_app_date] => 2018-10-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 31514
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -11
[patent_words_short_claim] => 27
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16171166
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/171166 | siRNA targeting LDHA | Oct 24, 2018 | Issued |
Array
(
[id] => 14778613
[patent_doc_number] => 20190264204
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-08-29
[patent_title] => COMPOSITIONS FOR MODULATING C9ORF72 EXPRESSION
[patent_app_type] => utility
[patent_app_number] => 16/163402
[patent_app_country] => US
[patent_app_date] => 2018-10-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 26191
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16163402
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/163402 | Compositions for modulating C9ORF72 expression | Oct 16, 2018 | Issued |
Array
(
[id] => 14277907
[patent_doc_number] => 20190136238
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-05-09
[patent_title] => TARGETING THE GLUTAMINE TO PYRUVATE PATHWAY FOR TREATMENT OF ONCOGENIC KRAS-ASSOCIATED CANCER
[patent_app_type] => utility
[patent_app_number] => 16/158634
[patent_app_country] => US
[patent_app_date] => 2018-10-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 26351
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16158634
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/158634 | Targeting the glutamine to pyruvate pathway for treatment of oncogenic Kras-associated cancer | Oct 11, 2018 | Issued |
Array
(
[id] => 15239563
[patent_doc_number] => 20190374567
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-12-12
[patent_title] => Reverse Transcriptase Dependent Conversion of RNA Templates Into DNA
[patent_app_type] => utility
[patent_app_number] => 16/140140
[patent_app_country] => US
[patent_app_date] => 2018-09-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 20352
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16140140
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/140140 | Reverse Transcriptase Dependent Conversion of RNA Templates Into DNA | Sep 23, 2018 | Abandoned |
Array
(
[id] => 16298128
[patent_doc_number] => 20200283851
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-09-10
[patent_title] => METHODS OF DETECTING miRNA
[patent_app_type] => utility
[patent_app_number] => 16/138338
[patent_app_country] => US
[patent_app_date] => 2018-09-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8278
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 86
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16138338
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/138338 | METHODS OF DETECTING miRNA | Sep 20, 2018 | Abandoned |
Array
(
[id] => 16253799
[patent_doc_number] => 20200263173
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-08-20
[patent_title] => COMPOSITIONS AND METHODS FOR TREATING TRANSPOSON ASSOCIATED DISEASES
[patent_app_type] => utility
[patent_app_number] => 16/645083
[patent_app_country] => US
[patent_app_date] => 2018-09-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18932
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16645083
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/645083 | Compositions and methods for treating transposon associated diseases | Sep 11, 2018 | Issued |
Array
(
[id] => 14665629
[patent_doc_number] => 10370706
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2019-08-06
[patent_title] => Molecular recognition systems with pyrimidine analog pairing
[patent_app_type] => utility
[patent_app_number] => 16/111590
[patent_app_country] => US
[patent_app_date] => 2018-08-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 10
[patent_figures_cnt] => 10
[patent_no_of_words] => 8193
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 142
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16111590
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/111590 | Molecular recognition systems with pyrimidine analog pairing | Aug 23, 2018 | Issued |
Array
(
[id] => 13729613
[patent_doc_number] => 20180369274
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-27
[patent_title] => RNA INTERFERENCE AGENTS FOR GST-PI GENE MODULATION
[patent_app_type] => utility
[patent_app_number] => 16/101490
[patent_app_country] => US
[patent_app_date] => 2018-08-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18417
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -20
[patent_words_short_claim] => 70
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16101490
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/101490 | RNA interference agents for GST-p gene modulation | Aug 11, 2018 | Issued |
Array
(
[id] => 13837225
[patent_doc_number] => 20190022097
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-01-24
[patent_title] => MOLECULAR TARGETS FOR THE TREATMENT OF WOUNDS, IN PARTICULAR CHRONIC WOUNDS
[patent_app_type] => utility
[patent_app_number] => 16/055571
[patent_app_country] => US
[patent_app_date] => 2018-08-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8333
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16055571
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/055571 | MOLECULAR TARGETS FOR THE TREATMENT OF WOUNDS, IN PARTICULAR CHRONIC WOUNDS | Aug 5, 2018 | Abandoned |
Array
(
[id] => 14214579
[patent_doc_number] => 20190119674
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-04-25
[patent_title] => COMPOSITIONS AND METHODS FOR INHIBITING EXPRESSION OF THE LECT2 GENE
[patent_app_type] => utility
[patent_app_number] => 16/052719
[patent_app_country] => US
[patent_app_date] => 2018-08-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 48993
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -27
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16052719
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/052719 | COMPOSITIONS AND METHODS FOR INHIBITING EXPRESSION OF THE LECT2 GENE | Aug 1, 2018 | Abandoned |
Array
(
[id] => 13607623
[patent_doc_number] => 20180355361
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-13
[patent_title] => MODULATION OF PRE-MRNA USING SPLICE MODULATING OLIGONUCLEOTIDES AS THERAPEUTIC AGENTS IN THE TREATMENT OF DISEASE
[patent_app_type] => utility
[patent_app_number] => 16/049109
[patent_app_country] => US
[patent_app_date] => 2018-07-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 31421
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -4
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16049109
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/049109 | Modulation of pre-MRNA using splice modulating oligonucleotides as therapeutic agents in the treatment of disease | Jul 29, 2018 | Issued |
Array
(
[id] => 13867447
[patent_doc_number] => 20190030064
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-01-31
[patent_title] => METHODS OF TREATING MYELODYSPLASTIC SYNDROME
[patent_app_type] => utility
[patent_app_number] => 16/047502
[patent_app_country] => US
[patent_app_date] => 2018-07-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 15187
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -37
[patent_words_short_claim] => 32
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16047502
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/047502 | Methods of treating myelodysplastic syndrome | Jul 26, 2018 | Issued |
Array
(
[id] => 16932810
[patent_doc_number] => 20210198699
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-07-01
[patent_title] => KIT FOR REPARING FBN1T7498C MUTATION, COMBINATION FOR MAKING AND REPAIRING MUTATION, AND METHOD OF REPAIRING THEREOF
[patent_app_type] => utility
[patent_app_number] => 16/470247
[patent_app_country] => US
[patent_app_date] => 2018-07-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6391
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -6
[patent_words_short_claim] => 24
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16470247
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/470247 | KIT FOR REPARING FBN1T7498C MUTATION, COMBINATION FOR MAKING AND REPAIRING MUTATION, AND METHOD OF REPAIRING THEREOF | Jul 24, 2018 | Abandoned |