Search

Robert M Kunemund

Examiner (ID: 15816, Phone: (571)272-1464 , Office: P/1714 )

Most Active Art Unit
1714
Art Unit(s)
1722, 1109, 1103, 1763, 1792, 1714, 1107, 1765
Total Applications
3522
Issued Applications
2760
Pending Applications
193
Abandoned Applications
612

Applications

Application numberTitle of the applicationFiling DateStatus
Array ( [id] => 19277108 [patent_doc_number] => 12027239 [patent_country] => US [patent_kind] => B2 [patent_issue_date] => 2024-07-02 [patent_title] => Quality prediction method, preparation method and system of conductive gallium oxide based on deep learning and edge-defined film-fed growth method [patent_app_type] => utility [patent_app_number] => 17/760945 [patent_app_country] => US [patent_app_date] => 2021-02-08 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 4 [patent_figures_cnt] => 4 [patent_no_of_words] => 8942 [patent_no_of_claims] => 10 [patent_no_of_ind_claims] => 2 [patent_words_short_claim] => 160 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => patent [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17760945 [rel_patent_id] =>[rel_patent_doc_number] =>)
17/760945
Quality prediction method, preparation method and system of conductive gallium oxide based on deep learning and edge-defined film-fed growth method Feb 7, 2021 Issued
Array ( [id] => 18391880 [patent_doc_number] => 20230160098 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2023-05-25 [patent_title] => QUALITY PREDICTION METHOD, PREPARATION METHOD AND SYSTEM OF HIGH RESISTANCE GALLIUM OXIDE BASED ON DEEP LEARNING AND EDGE-DEFINED FILM-FED GROWTH METHOD [patent_app_type] => utility [patent_app_number] => 17/760964 [patent_app_country] => US [patent_app_date] => 2021-02-08 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 9048 [patent_no_of_claims] => 0 [patent_no_of_ind_claims] => -8 [patent_words_short_claim] => 2 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17760964 [rel_patent_id] =>[rel_patent_doc_number] =>)
17/760964
Quality prediction method, preparation method and system of high resistance gallium oxide based on deep learning and edge-defined film-fed growth method Feb 7, 2021 Issued
Array ( [id] => 18391878 [patent_doc_number] => 20230160096 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2023-05-25 [patent_title] => QUALITY PREDICTION METHOD, PREPARATION METHOD AND SYSTEM OF HIGH RESISTANCE GALLIUM OXIDE BASED ON DEEP LEARNING AND CZOCHRALSKI METHOD [patent_app_type] => utility [patent_app_number] => 17/760938 [patent_app_country] => US [patent_app_date] => 2021-02-07 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 8125 [patent_no_of_claims] => 0 [patent_no_of_ind_claims] => -8 [patent_words_short_claim] => 2 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17760938 [rel_patent_id] =>[rel_patent_doc_number] =>)
17/760938
Quality prediction method, preparation method and system of high resistance gallium oxide based on deep learning and Czochralski method Feb 6, 2021 Issued
Array ( [id] => 18408702 [patent_doc_number] => 20230170055 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2023-06-01 [patent_title] => PREPARATION METHOD OF CONDUCTIVE GALLIUM OXIDE BASED ON DEEP LEARNING AND VERTICAL BRIDGMAN GROWTH METHOD [patent_app_type] => utility [patent_app_number] => 17/761322 [patent_app_country] => US [patent_app_date] => 2021-02-07 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 8483 [patent_no_of_claims] => 0 [patent_no_of_ind_claims] => -8 [patent_words_short_claim] => 2 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17761322 [rel_patent_id] =>[rel_patent_doc_number] =>)
17/761322
Preparation method of conductive gallium oxide based on deep learning and vertical Bridgman growth method Feb 6, 2021 Issued
Array ( [id] => 19276486 [patent_doc_number] => 12026616 [patent_country] => US [patent_kind] => B2 [patent_issue_date] => 2024-07-02 [patent_title] => Preparation method of high resistance gallium oxide based on deep learning and vertical bridgman growth method [patent_app_type] => utility [patent_app_number] => 17/761030 [patent_app_country] => US [patent_app_date] => 2021-02-05 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 3 [patent_figures_cnt] => 4 [patent_no_of_words] => 8686 [patent_no_of_claims] => 10 [patent_no_of_ind_claims] => 2 [patent_words_short_claim] => 183 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => patent [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17761030 [rel_patent_id] =>[rel_patent_doc_number] =>)
17/761030
Preparation method of high resistance gallium oxide based on deep learning and vertical bridgman growth method Feb 4, 2021 Issued
Array ( [id] => 18391879 [patent_doc_number] => 20230160097 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2023-05-25 [patent_title] => QUALITY PREDICTION METHOD, PREPARATION METHOD AND SYSTEM OF CONDUCTIVE GALLIUM OXIDE BASED ON DEEP LEARNING AND CZOCHRALSKI METHOD [patent_app_type] => utility [patent_app_number] => 17/761042 [patent_app_country] => US [patent_app_date] => 2021-02-05 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 7997 [patent_no_of_claims] => 0 [patent_no_of_ind_claims] => -8 [patent_words_short_claim] => 2 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17761042 [rel_patent_id] =>[rel_patent_doc_number] =>)
17/761042
Quality prediction method, preparation method and system of conductive gallium oxide based on deep learning and Czochralski method Feb 4, 2021 Issued
Array ( [id] => 18546272 [patent_doc_number] => 11719619 [patent_country] => US [patent_kind] => B2 [patent_issue_date] => 2023-08-08 [patent_title] => System and method for testing adhesion of brittle materials [patent_app_type] => utility [patent_app_number] => 17/169203 [patent_app_country] => US [patent_app_date] => 2021-02-05 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 23 [patent_figures_cnt] => 26 [patent_no_of_words] => 14328 [patent_no_of_claims] => 20 [patent_no_of_ind_claims] => 3 [patent_words_short_claim] => 128 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => patent [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17169203 [rel_patent_id] =>[rel_patent_doc_number] =>)
17/169203
System and method for testing adhesion of brittle materials Feb 4, 2021 Issued
Array ( [id] => 18685520 [patent_doc_number] => 11781243 [patent_country] => US [patent_kind] => B2 [patent_issue_date] => 2023-10-10 [patent_title] => Method for depositing low temperature phosphorous-doped silicon [patent_app_type] => utility [patent_app_number] => 17/166160 [patent_app_country] => US [patent_app_date] => 2021-02-03 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 3 [patent_figures_cnt] => 3 [patent_no_of_words] => 6590 [patent_no_of_claims] => 19 [patent_no_of_ind_claims] => 2 [patent_words_short_claim] => 129 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => patent [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17166160 [rel_patent_id] =>[rel_patent_doc_number] =>)
17/166160
Method for depositing low temperature phosphorous-doped silicon Feb 2, 2021 Issued
Array ( [id] => 17762873 [patent_doc_number] => 20220236485 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2022-07-28 [patent_title] => FORMING OPTICAL COMPONENTS USING SELECTIVE AREA EPITAXY [patent_app_type] => utility [patent_app_number] => 17/159406 [patent_app_country] => US [patent_app_date] => 2021-01-27 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 3285 [patent_no_of_claims] => 0 [patent_no_of_ind_claims] => -19 [patent_words_short_claim] => 82 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17159406 [rel_patent_id] =>[rel_patent_doc_number] =>)
17/159406
Forming optical components using selective area epitaxy Jan 26, 2021 Issued
Array ( [id] => 16839991 [patent_doc_number] => 20210148003 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2021-05-20 [patent_title] => PYRAMIDAL GROWTH METHOD FOR LONG-SEED KDP-TYPE CRYSTAL [patent_app_type] => utility [patent_app_number] => 17/159106 [patent_app_country] => US [patent_app_date] => 2021-01-26 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 3654 [patent_no_of_claims] => 0 [patent_no_of_ind_claims] => -3 [patent_words_short_claim] => 449 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17159106 [rel_patent_id] =>[rel_patent_doc_number] =>)
17/159106
Method for rapid growth of long seed KDP-type crystals Jan 25, 2021 Issued
Array ( [id] => 18910600 [patent_doc_number] => 11873573 [patent_country] => US [patent_kind] => B2 [patent_issue_date] => 2024-01-16 [patent_title] => Field-editing technology for quantum materials synthesis using a magnetic field laser furnace [patent_app_type] => utility [patent_app_number] => 17/794108 [patent_app_country] => US [patent_app_date] => 2021-01-21 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 19 [patent_figures_cnt] => 25 [patent_no_of_words] => 10027 [patent_no_of_claims] => 19 [patent_no_of_ind_claims] => 3 [patent_words_short_claim] => 85 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => patent [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17794108 [rel_patent_id] =>[rel_patent_doc_number] =>)
17/794108
Field-editing technology for quantum materials synthesis using a magnetic field laser furnace Jan 20, 2021 Issued
Array ( [id] => 18456153 [patent_doc_number] => 20230197435 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2023-06-22 [patent_title] => METHOD FOR MANUFACTURING A COMPOSITE STRUCTURE COMPRISING A THIN LAYER MADE OF MONOCRYSTALLINE SIC ON A CARRIER SUBSTRATE MADE OF SIC [patent_app_type] => utility [patent_app_number] => 17/907517 [patent_app_country] => US [patent_app_date] => 2021-01-12 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 6957 [patent_no_of_claims] => 0 [patent_no_of_ind_claims] => -17 [patent_words_short_claim] => 233 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17907517 [rel_patent_id] =>[rel_patent_doc_number] =>)
17/907517
Method for manufacturing a composite structure comprising a thin layer made of monocrystalline sic on a carrier substrate made of SiC Jan 11, 2021 Issued
Array ( [id] => 18733627 [patent_doc_number] => 11802350 [patent_country] => US [patent_kind] => B2 [patent_issue_date] => 2023-10-31 [patent_title] => Layered GaAs, method of preparing same, and GaAs nanosheet exfoliated from same [patent_app_type] => utility [patent_app_number] => 17/146224 [patent_app_country] => US [patent_app_date] => 2021-01-11 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 11 [patent_figures_cnt] => 21 [patent_no_of_words] => 4524 [patent_no_of_claims] => 5 [patent_no_of_ind_claims] => 1 [patent_words_short_claim] => 105 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => patent [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17146224 [rel_patent_id] =>[rel_patent_doc_number] =>)
17/146224
Layered GaAs, method of preparing same, and GaAs nanosheet exfoliated from same Jan 10, 2021 Issued
Array ( [id] => 16981451 [patent_doc_number] => 20210225688 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2021-07-22 [patent_title] => SUSCEPTOR WITH SIDEWALL HUMPS FOR UNIFORM DEPOSITION [patent_app_type] => utility [patent_app_number] => 17/141610 [patent_app_country] => US [patent_app_date] => 2021-01-05 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 5798 [patent_no_of_claims] => 0 [patent_no_of_ind_claims] => -13 [patent_words_short_claim] => 50 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17141610 [rel_patent_id] =>[rel_patent_doc_number] =>)
17/141610
Susceptor with sidewall humps for uniform deposition Jan 4, 2021 Issued
Array ( [id] => 17709021 [patent_doc_number] => 20220209029 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2022-06-30 [patent_title] => HYDROTHERMAL GENERATION OF SINGLE CRYSTALLINE MOLYBDENUM DISULFIDE [patent_app_type] => utility [patent_app_number] => 17/139090 [patent_app_country] => US [patent_app_date] => 2020-12-31 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 3559 [patent_no_of_claims] => 0 [patent_no_of_ind_claims] => -12 [patent_words_short_claim] => 86 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17139090 [rel_patent_id] =>[rel_patent_doc_number] =>)
17/139090
Hydrothermal generation of single crystalline molybdenum disulfide Dec 30, 2020 Issued
Array ( [id] => 17336567 [patent_doc_number] => 20220002898 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2022-01-06 [patent_title] => HEAT SHIELD STRUCTURE FOR SINGLE CRYSTAL PRODUCTION FURNACE AND SINGLE CRYSTAL PRODUCTION FURNACE [patent_app_type] => utility [patent_app_number] => 17/139975 [patent_app_country] => US [patent_app_date] => 2020-12-31 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 4495 [patent_no_of_claims] => 0 [patent_no_of_ind_claims] => -17 [patent_words_short_claim] => 107 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17139975 [rel_patent_id] =>[rel_patent_doc_number] =>)
17/139975
Heat shield structure for single crystal production furnace and single crystal production furnace Dec 30, 2020 Issued
Array ( [id] => 17705124 [patent_doc_number] => 20220205130 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2022-06-30 [patent_title] => ADDITIVE FEED SYSTEMS, INGOT PULLER APPARATUS AND METHODS FOR FORMING A SINGLE CRYSTAL SILICON INGOT WITH USE OF SUCH ADDITIVE FEED SYSTEMS [patent_app_type] => utility [patent_app_number] => 17/138035 [patent_app_country] => US [patent_app_date] => 2020-12-30 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 4194 [patent_no_of_claims] => 0 [patent_no_of_ind_claims] => -16 [patent_words_short_claim] => 92 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17138035 [rel_patent_id] =>[rel_patent_doc_number] =>)
17/138035
Additive feed systems, ingot puller apparatus and methods for forming a single crystal silicon ingot with use of such additive feed systems Dec 29, 2020 Issued
Array ( [id] => 16978080 [patent_doc_number] => 20210222317 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2021-07-22 [patent_title] => HIGH QUALITY GROUP-III METAL NITRIDE SEED CRYSTAL AND METHOD OF MAKING [patent_app_type] => utility [patent_app_number] => 17/133002 [patent_app_country] => US [patent_app_date] => 2020-12-23 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 16668 [patent_no_of_claims] => 0 [patent_no_of_ind_claims] => -22 [patent_words_short_claim] => 205 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17133002 [rel_patent_id] =>[rel_patent_doc_number] =>)
17/133002
High quality group-III metal nitride seed crystal and method of making Dec 22, 2020 Issued
Array ( [id] => 17370498 [patent_doc_number] => 20220025550 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2022-01-27 [patent_title] => LARGE GRAIN QUASI-SINGLE-CRYSTAL FILM AND MANUFACTURING METHOD THEREOF [patent_app_type] => utility [patent_app_number] => 17/132183 [patent_app_country] => US [patent_app_date] => 2020-12-23 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 3439 [patent_no_of_claims] => 0 [patent_no_of_ind_claims] => -11 [patent_words_short_claim] => 99 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17132183 [rel_patent_id] =>[rel_patent_doc_number] =>)
17/132183
Large grain quasi-single-crystal film and manufacturing method thereof Dec 22, 2020 Issued
Array ( [id] => 17687493 [patent_doc_number] => 20220194785 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2022-06-23 [patent_title] => PROGRAMMABLE STRUCTURAL BUILDING BLOCKS [patent_app_type] => utility [patent_app_number] => 17/129197 [patent_app_country] => US [patent_app_date] => 2020-12-21 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 4351 [patent_no_of_claims] => 0 [patent_no_of_ind_claims] => -17 [patent_words_short_claim] => 97 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17129197 [rel_patent_id] =>[rel_patent_doc_number] =>)
17/129197
Programmable structural building blocks Dec 20, 2020 Issued
Menu