| Application number | Title of the application | Filing Date | Status |
|---|
Array
(
[id] => 19277108
[patent_doc_number] => 12027239
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-07-02
[patent_title] => Quality prediction method, preparation method and system of conductive gallium oxide based on deep learning and edge-defined film-fed growth method
[patent_app_type] => utility
[patent_app_number] => 17/760945
[patent_app_country] => US
[patent_app_date] => 2021-02-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 4
[patent_no_of_words] => 8942
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 160
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17760945
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/760945 | Quality prediction method, preparation method and system of conductive gallium oxide based on deep learning and edge-defined film-fed growth method | Feb 7, 2021 | Issued |
Array
(
[id] => 18391880
[patent_doc_number] => 20230160098
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-05-25
[patent_title] => QUALITY PREDICTION METHOD, PREPARATION METHOD AND SYSTEM OF HIGH RESISTANCE GALLIUM OXIDE BASED ON DEEP LEARNING AND EDGE-DEFINED FILM-FED GROWTH METHOD
[patent_app_type] => utility
[patent_app_number] => 17/760964
[patent_app_country] => US
[patent_app_date] => 2021-02-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9048
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -8
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17760964
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/760964 | Quality prediction method, preparation method and system of high resistance gallium oxide based on deep learning and edge-defined film-fed growth method | Feb 7, 2021 | Issued |
Array
(
[id] => 18391878
[patent_doc_number] => 20230160096
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-05-25
[patent_title] => QUALITY PREDICTION METHOD, PREPARATION METHOD AND SYSTEM OF HIGH RESISTANCE GALLIUM OXIDE BASED ON DEEP LEARNING AND CZOCHRALSKI METHOD
[patent_app_type] => utility
[patent_app_number] => 17/760938
[patent_app_country] => US
[patent_app_date] => 2021-02-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8125
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -8
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17760938
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/760938 | Quality prediction method, preparation method and system of high resistance gallium oxide based on deep learning and Czochralski method | Feb 6, 2021 | Issued |
Array
(
[id] => 18408702
[patent_doc_number] => 20230170055
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-06-01
[patent_title] => PREPARATION METHOD OF CONDUCTIVE GALLIUM OXIDE BASED ON DEEP LEARNING AND VERTICAL BRIDGMAN GROWTH METHOD
[patent_app_type] => utility
[patent_app_number] => 17/761322
[patent_app_country] => US
[patent_app_date] => 2021-02-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8483
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -8
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17761322
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/761322 | Preparation method of conductive gallium oxide based on deep learning and vertical Bridgman growth method | Feb 6, 2021 | Issued |
Array
(
[id] => 19276486
[patent_doc_number] => 12026616
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-07-02
[patent_title] => Preparation method of high resistance gallium oxide based on deep learning and vertical bridgman growth method
[patent_app_type] => utility
[patent_app_number] => 17/761030
[patent_app_country] => US
[patent_app_date] => 2021-02-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 3
[patent_figures_cnt] => 4
[patent_no_of_words] => 8686
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 183
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17761030
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/761030 | Preparation method of high resistance gallium oxide based on deep learning and vertical bridgman growth method | Feb 4, 2021 | Issued |
Array
(
[id] => 18391879
[patent_doc_number] => 20230160097
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-05-25
[patent_title] => QUALITY PREDICTION METHOD, PREPARATION METHOD AND SYSTEM OF CONDUCTIVE GALLIUM OXIDE BASED ON DEEP LEARNING AND CZOCHRALSKI METHOD
[patent_app_type] => utility
[patent_app_number] => 17/761042
[patent_app_country] => US
[patent_app_date] => 2021-02-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7997
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -8
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17761042
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/761042 | Quality prediction method, preparation method and system of conductive gallium oxide based on deep learning and Czochralski method | Feb 4, 2021 | Issued |
Array
(
[id] => 18546272
[patent_doc_number] => 11719619
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-08-08
[patent_title] => System and method for testing adhesion of brittle materials
[patent_app_type] => utility
[patent_app_number] => 17/169203
[patent_app_country] => US
[patent_app_date] => 2021-02-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 23
[patent_figures_cnt] => 26
[patent_no_of_words] => 14328
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 128
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17169203
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/169203 | System and method for testing adhesion of brittle materials | Feb 4, 2021 | Issued |
Array
(
[id] => 18685520
[patent_doc_number] => 11781243
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-10-10
[patent_title] => Method for depositing low temperature phosphorous-doped silicon
[patent_app_type] => utility
[patent_app_number] => 17/166160
[patent_app_country] => US
[patent_app_date] => 2021-02-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 3
[patent_figures_cnt] => 3
[patent_no_of_words] => 6590
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 129
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17166160
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/166160 | Method for depositing low temperature phosphorous-doped silicon | Feb 2, 2021 | Issued |
Array
(
[id] => 17762873
[patent_doc_number] => 20220236485
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-07-28
[patent_title] => FORMING OPTICAL COMPONENTS USING SELECTIVE AREA EPITAXY
[patent_app_type] => utility
[patent_app_number] => 17/159406
[patent_app_country] => US
[patent_app_date] => 2021-01-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 3285
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 82
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17159406
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/159406 | Forming optical components using selective area epitaxy | Jan 26, 2021 | Issued |
Array
(
[id] => 16839991
[patent_doc_number] => 20210148003
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-20
[patent_title] => PYRAMIDAL GROWTH METHOD FOR LONG-SEED KDP-TYPE CRYSTAL
[patent_app_type] => utility
[patent_app_number] => 17/159106
[patent_app_country] => US
[patent_app_date] => 2021-01-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 3654
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -3
[patent_words_short_claim] => 449
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17159106
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/159106 | Method for rapid growth of long seed KDP-type crystals | Jan 25, 2021 | Issued |
Array
(
[id] => 18910600
[patent_doc_number] => 11873573
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-01-16
[patent_title] => Field-editing technology for quantum materials synthesis using a magnetic field laser furnace
[patent_app_type] => utility
[patent_app_number] => 17/794108
[patent_app_country] => US
[patent_app_date] => 2021-01-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 19
[patent_figures_cnt] => 25
[patent_no_of_words] => 10027
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 85
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17794108
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/794108 | Field-editing technology for quantum materials synthesis using a magnetic field laser furnace | Jan 20, 2021 | Issued |
Array
(
[id] => 18456153
[patent_doc_number] => 20230197435
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-06-22
[patent_title] => METHOD FOR MANUFACTURING A COMPOSITE STRUCTURE COMPRISING A THIN LAYER MADE OF MONOCRYSTALLINE SIC ON A CARRIER SUBSTRATE MADE OF SIC
[patent_app_type] => utility
[patent_app_number] => 17/907517
[patent_app_country] => US
[patent_app_date] => 2021-01-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6957
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 233
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17907517
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/907517 | Method for manufacturing a composite structure comprising a thin layer made of monocrystalline sic on a carrier substrate made of SiC | Jan 11, 2021 | Issued |
Array
(
[id] => 18733627
[patent_doc_number] => 11802350
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-10-31
[patent_title] => Layered GaAs, method of preparing same, and GaAs nanosheet exfoliated from same
[patent_app_type] => utility
[patent_app_number] => 17/146224
[patent_app_country] => US
[patent_app_date] => 2021-01-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 21
[patent_no_of_words] => 4524
[patent_no_of_claims] => 5
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 105
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17146224
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/146224 | Layered GaAs, method of preparing same, and GaAs nanosheet exfoliated from same | Jan 10, 2021 | Issued |
Array
(
[id] => 16981451
[patent_doc_number] => 20210225688
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-07-22
[patent_title] => SUSCEPTOR WITH SIDEWALL HUMPS FOR UNIFORM DEPOSITION
[patent_app_type] => utility
[patent_app_number] => 17/141610
[patent_app_country] => US
[patent_app_date] => 2021-01-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5798
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 50
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17141610
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/141610 | Susceptor with sidewall humps for uniform deposition | Jan 4, 2021 | Issued |
Array
(
[id] => 17709021
[patent_doc_number] => 20220209029
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-06-30
[patent_title] => HYDROTHERMAL GENERATION OF SINGLE CRYSTALLINE MOLYBDENUM DISULFIDE
[patent_app_type] => utility
[patent_app_number] => 17/139090
[patent_app_country] => US
[patent_app_date] => 2020-12-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 3559
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -12
[patent_words_short_claim] => 86
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17139090
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/139090 | Hydrothermal generation of single crystalline molybdenum disulfide | Dec 30, 2020 | Issued |
Array
(
[id] => 17336567
[patent_doc_number] => 20220002898
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-01-06
[patent_title] => HEAT SHIELD STRUCTURE FOR SINGLE CRYSTAL PRODUCTION FURNACE AND SINGLE CRYSTAL PRODUCTION FURNACE
[patent_app_type] => utility
[patent_app_number] => 17/139975
[patent_app_country] => US
[patent_app_date] => 2020-12-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4495
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 107
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17139975
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/139975 | Heat shield structure for single crystal production furnace and single crystal production furnace | Dec 30, 2020 | Issued |
Array
(
[id] => 17705124
[patent_doc_number] => 20220205130
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-06-30
[patent_title] => ADDITIVE FEED SYSTEMS, INGOT PULLER APPARATUS AND METHODS FOR FORMING A SINGLE CRYSTAL SILICON INGOT WITH USE OF SUCH ADDITIVE FEED SYSTEMS
[patent_app_type] => utility
[patent_app_number] => 17/138035
[patent_app_country] => US
[patent_app_date] => 2020-12-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4194
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 92
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17138035
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/138035 | Additive feed systems, ingot puller apparatus and methods for forming a single crystal silicon ingot with use of such additive feed systems | Dec 29, 2020 | Issued |
Array
(
[id] => 16978080
[patent_doc_number] => 20210222317
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-07-22
[patent_title] => HIGH QUALITY GROUP-III METAL NITRIDE SEED CRYSTAL AND METHOD OF MAKING
[patent_app_type] => utility
[patent_app_number] => 17/133002
[patent_app_country] => US
[patent_app_date] => 2020-12-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 16668
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -22
[patent_words_short_claim] => 205
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17133002
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/133002 | High quality group-III metal nitride seed crystal and method of making | Dec 22, 2020 | Issued |
Array
(
[id] => 17370498
[patent_doc_number] => 20220025550
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-01-27
[patent_title] => LARGE GRAIN QUASI-SINGLE-CRYSTAL FILM AND MANUFACTURING METHOD THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/132183
[patent_app_country] => US
[patent_app_date] => 2020-12-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 3439
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -11
[patent_words_short_claim] => 99
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17132183
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/132183 | Large grain quasi-single-crystal film and manufacturing method thereof | Dec 22, 2020 | Issued |
Array
(
[id] => 17687493
[patent_doc_number] => 20220194785
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-06-23
[patent_title] => PROGRAMMABLE STRUCTURAL BUILDING BLOCKS
[patent_app_type] => utility
[patent_app_number] => 17/129197
[patent_app_country] => US
[patent_app_date] => 2020-12-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4351
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 97
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17129197
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/129197 | Programmable structural building blocks | Dec 20, 2020 | Issued |