
Robert S. Landsman
Examiner (ID: 14280, Phone: (571)272-0888 , Office: P/1647 )
| Most Active Art Unit | 1647 |
| Art Unit(s) | 1647, 1646 |
| Total Applications | 2029 |
| Issued Applications | 1242 |
| Pending Applications | 272 |
| Abandoned Applications | 566 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 10268332
[patent_doc_number] => 20150153329
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-06-04
[patent_title] => 'ASSAY SYSTEM FOR GLP-2 RECEPTOR LIGANDS'
[patent_app_type] => utility
[patent_app_number] => 14/616295
[patent_app_country] => US
[patent_app_date] => 2015-02-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 7
[patent_no_of_words] => 3562
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 5
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14616295
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/616295 | ASSAY SYSTEM FOR GLP-2 RECEPTOR LIGANDS | Feb 5, 2015 | |
Array
(
[id] => 10338674
[patent_doc_number] => 20150223679
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-08-13
[patent_title] => 'BLUE LIGHT-ACTIVATED ION CHANNEL MOLECULES AND USES THEREOF'
[patent_app_type] => utility
[patent_app_number] => 14/616228
[patent_app_country] => US
[patent_app_date] => 2015-02-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 5
[patent_no_of_words] => 18845
[patent_no_of_claims] => 32
[patent_no_of_ind_claims] => 16
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14616228
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/616228 | Blue-light-activated ion channel polypeptides and uses thereof | Feb 5, 2015 | Issued |
Array
(
[id] => 16306604
[patent_doc_number] => 10775388
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-09-15
[patent_title] => Methods of using antibodies to determine periostin levels in a sample
[patent_app_type] => utility
[patent_app_number] => 15/106223
[patent_app_country] => US
[patent_app_date] => 2015-02-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 21
[patent_figures_cnt] => 27
[patent_no_of_words] => 50251
[patent_no_of_claims] => 23
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 87
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15106223
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/106223 | Methods of using antibodies to determine periostin levels in a sample | Feb 4, 2015 | Issued |
Array
(
[id] => 12106292
[patent_doc_number] => 09862762
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2018-01-09
[patent_title] => 'Monoclonal antibodies which bind human periostin'
[patent_app_type] => utility
[patent_app_number] => 15/104502
[patent_app_country] => US
[patent_app_date] => 2015-02-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 21
[patent_figures_cnt] => 28
[patent_no_of_words] => 54040
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 42
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15104502
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/104502 | Monoclonal antibodies which bind human periostin | Feb 4, 2015 | Issued |
Array
(
[id] => 11635120
[patent_doc_number] => 09657080
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2017-05-23
[patent_title] => 'Methods for treating diseases with peptides that inhibit IGF-1'
[patent_app_type] => utility
[patent_app_number] => 14/610356
[patent_app_country] => US
[patent_app_date] => 2015-01-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 2
[patent_figures_cnt] => 2
[patent_no_of_words] => 6401
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 110
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14610356
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/610356 | Methods for treating diseases with peptides that inhibit IGF-1 | Jan 29, 2015 | Issued |
Array
(
[id] => 10405275
[patent_doc_number] => 20150290284
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-10-15
[patent_title] => 'IDEOTYPICALLY MODULATED PHARMACOEFFECTORS FOR SELECTIVE CELL TREATMENT'
[patent_app_type] => utility
[patent_app_number] => 14/603691
[patent_app_country] => US
[patent_app_date] => 2015-01-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 7
[patent_no_of_words] => 16785
[patent_no_of_claims] => 41
[patent_no_of_ind_claims] => 5
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14603691
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/603691 | IDEOTYPICALLY MODULATED PHARMACOEFFECTORS FOR SELECTIVE CELL TREATMENT | Jan 22, 2015 | |
Array
(
[id] => 13053783
[patent_doc_number] => 10048277
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2018-08-14
[patent_title] => Method for detecting an FGFR3/TACC3 fusion protein, or encoding gene thereof
[patent_app_type] => utility
[patent_app_number] => 15/113599
[patent_app_country] => US
[patent_app_date] => 2015-01-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 24091
[patent_no_of_claims] => 6
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 352
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15113599
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/113599 | Method for detecting an FGFR3/TACC3 fusion protein, or encoding gene thereof | Jan 22, 2015 | Issued |
Array
(
[id] => 12962629
[patent_doc_number] => 09873725
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2018-01-23
[patent_title] => Mimetic peptides which modulate L-type calcium channels
[patent_app_type] => utility
[patent_app_number] => 15/120700
[patent_app_country] => US
[patent_app_date] => 2015-01-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 6188
[patent_no_of_claims] => 3
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 86
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15120700
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/120700 | Mimetic peptides which modulate L-type calcium channels | Jan 22, 2015 | Issued |
Array
(
[id] => 10318572
[patent_doc_number] => 20150203575
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-07-23
[patent_title] => 'PILR ALPHA INTERACTIONS AND METHODS OF MODIFYING SAME'
[patent_app_type] => utility
[patent_app_number] => 14/598870
[patent_app_country] => US
[patent_app_date] => 2015-01-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 26
[patent_figures_cnt] => 26
[patent_no_of_words] => 18304
[patent_no_of_claims] => 43
[patent_no_of_ind_claims] => 7
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14598870
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/598870 | Methods for enhancing pathogen clearance by blocking its interaction with paired immunoglobulin-like type 2 receptor (PILR)α | Jan 15, 2015 | Issued |
Array
(
[id] => 10435773
[patent_doc_number] => 20150320785
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-11-12
[patent_title] => 'METHODS USED TO IDENTIFY AND TREAT GLIOBLASTOMA'
[patent_app_type] => utility
[patent_app_number] => 14/595423
[patent_app_country] => US
[patent_app_date] => 2015-01-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 23
[patent_figures_cnt] => 23
[patent_no_of_words] => 17518
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14595423
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/595423 | Methods used to characterize and treat glioblastoma | Jan 12, 2015 | Issued |
Array
(
[id] => 15951125
[patent_doc_number] => 10663462
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-05-26
[patent_title] => Method of treating vascular insulin resistance in a normoglycemic subject based on biomarkers
[patent_app_type] => utility
[patent_app_number] => 14/592611
[patent_app_country] => US
[patent_app_date] => 2015-01-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 2
[patent_figures_cnt] => 2
[patent_no_of_words] => 19523
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 75
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14592611
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/592611 | Method of treating vascular insulin resistance in a normoglycemic subject based on biomarkers | Jan 7, 2015 | Issued |
Array
(
[id] => 10299138
[patent_doc_number] => 20150184137
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-07-02
[patent_title] => 'AXL TYROSINE KINASE INHIBITORS AND METHODS OF MAKING AND USING THE SAME'
[patent_app_type] => utility
[patent_app_number] => 14/584555
[patent_app_country] => US
[patent_app_date] => 2014-12-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 19450
[patent_no_of_claims] => 31
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14584555
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/584555 | AXL TYROSINE KINASE INHIBITORS AND METHODS OF MAKING AND USING THE SAME | Dec 28, 2014 | Abandoned |
Array
(
[id] => 10051000
[patent_doc_number] => 09090867
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2015-07-28
[patent_title] => 'Fed-batch method of making anti-TNF-alpha antibody'
[patent_app_type] => utility
[patent_app_number] => 14/570685
[patent_app_country] => US
[patent_app_date] => 2014-12-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 1
[patent_figures_cnt] => 1
[patent_no_of_words] => 46477
[patent_no_of_claims] => 30
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 84
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14570685
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/570685 | Fed-batch method of making anti-TNF-alpha antibody | Dec 14, 2014 | Issued |
Array
(
[id] => 10032683
[patent_doc_number] => 09073988
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2015-07-07
[patent_title] => 'Fed batch method of making anti-TNF-alpha antibodies'
[patent_app_type] => utility
[patent_app_number] => 14/563993
[patent_app_country] => US
[patent_app_date] => 2014-12-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 1
[patent_figures_cnt] => 1
[patent_no_of_words] => 46816
[patent_no_of_claims] => 27
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 88
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14563993
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/563993 | Fed batch method of making anti-TNF-alpha antibodies | Dec 7, 2014 | Issued |
Array
(
[id] => 10225740
[patent_doc_number] => 20150110734
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-04-23
[patent_title] => 'TRAIL SINGLE CHAIN MOLECULES'
[patent_app_type] => utility
[patent_app_number] => 14/558681
[patent_app_country] => US
[patent_app_date] => 2014-12-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 15
[patent_figures_cnt] => 15
[patent_no_of_words] => 13983
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14558681
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/558681 | Single chain CD40L fusion polypeptides | Dec 1, 2014 | Issued |
Array
(
[id] => 12009702
[patent_doc_number] => 09803008
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2017-10-31
[patent_title] => 'Method of treating diabetic nephropathy by administering antibodies to vascular endothelial growth factor B (VEGF-B)'
[patent_app_type] => utility
[patent_app_number] => 15/039606
[patent_app_country] => US
[patent_app_date] => 2014-11-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 22
[patent_figures_cnt] => 69
[patent_no_of_words] => 30150
[patent_no_of_claims] => 11
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 65
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15039606
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/039606 | Method of treating diabetic nephropathy by administering antibodies to vascular endothelial growth factor B (VEGF-B) | Nov 27, 2014 | Issued |
Array
(
[id] => 11419876
[patent_doc_number] => 20170028020
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-02-02
[patent_title] => 'LIQUID FORMULATION OF A FUSION PROTEIN COMPRISING TNFR AND FC REGION'
[patent_app_type] => utility
[patent_app_number] => 15/038953
[patent_app_country] => US
[patent_app_date] => 2014-11-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 4
[patent_no_of_words] => 10357
[patent_no_of_claims] => 30
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15038953
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/038953 | Liquid formulation of a fusion protein comprising TNFR and Fc region | Nov 27, 2014 | Issued |
Array
(
[id] => 12166151
[patent_doc_number] => 09884915
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2018-02-06
[patent_title] => 'Antibodies against CCR9 and methods of use thereof'
[patent_app_type] => utility
[patent_app_number] => 15/032475
[patent_app_country] => US
[patent_app_date] => 2014-11-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 21
[patent_figures_cnt] => 13
[patent_no_of_words] => 32587
[patent_no_of_claims] => 6
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 216
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15032475
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/032475 | Antibodies against CCR9 and methods of use thereof | Nov 24, 2014 | Issued |
Array
(
[id] => 10347541
[patent_doc_number] => 20150232547
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-08-20
[patent_title] => 'TREATMENT OF CANCER WITH ELEVATED DOSAGES OF SOLUBLE FGFR1 FUSION PROTEINS'
[patent_app_type] => utility
[patent_app_number] => 14/551782
[patent_app_country] => US
[patent_app_date] => 2014-11-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 3
[patent_figures_cnt] => 3
[patent_no_of_words] => 18171
[patent_no_of_claims] => 23
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14551782
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/551782 | Treatment of cancer with elevated dosages of soluble FGFR1 fusion proteins | Nov 23, 2014 | Issued |
Array
(
[id] => 11678328
[patent_doc_number] => 09676844
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2017-06-13
[patent_title] => 'Pharmaceutical compositions comprising DENND1A variant 2 and methods of use thereof'
[patent_app_type] => utility
[patent_app_number] => 15/036119
[patent_app_country] => US
[patent_app_date] => 2014-11-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 16
[patent_figures_cnt] => 53
[patent_no_of_words] => 22635
[patent_no_of_claims] => 23
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 53
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15036119
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/036119 | Pharmaceutical compositions comprising DENND1A variant 2 and methods of use thereof | Nov 18, 2014 | Issued |