
Ronald Hinson
Examiner (ID: 4914, Phone: (571)270-7915 , Office: P/2837 )
| Most Active Art Unit | 2837 |
| Art Unit(s) | 2832, 2837 |
| Total Applications | 993 |
| Issued Applications | 704 |
| Pending Applications | 84 |
| Abandoned Applications | 227 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 20288660
[patent_doc_number] => 20250313903
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2025-10-09
[patent_title] => NEOANTIGEN IMMUNOTHERAPY
[patent_app_type] => utility
[patent_app_number] => 19/240318
[patent_app_country] => US
[patent_app_date] => 2025-06-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 59553
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 31
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 19240318
[rel_patent_id] =>[rel_patent_doc_number] =>) 19/240318 | NEOANTIGEN IMMUNOTHERAPY | Jun 16, 2025 | Pending |
Array
(
[id] => 19051308
[patent_doc_number] => 20240093277
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-03-21
[patent_title] => SYSTEM FOR PERFORMING NUCLEIC ACID AMPLIFICATION ASSAYS
[patent_app_type] => utility
[patent_app_number] => 18/361797
[patent_app_country] => US
[patent_app_date] => 2023-07-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 86618
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 358
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18361797
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/361797 | SYSTEM FOR PERFORMING NUCLEIC ACID AMPLIFICATION ASSAYS | Jul 27, 2023 | Pending |
Array
(
[id] => 18726337
[patent_doc_number] => 20230340614
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-10-26
[patent_title] => TREATING TUMORS RESULTING IN OR FROM CNS METASTASIS USING MDM2/4 AND CDKN2A INHIBITORS
[patent_app_type] => utility
[patent_app_number] => 18/139402
[patent_app_country] => US
[patent_app_date] => 2023-04-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5414
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 50
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18139402
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/139402 | TREATING TUMORS RESULTING IN OR FROM CNS METASTASIS USING MDM2/4 AND CDKN2A INHIBITORS | Apr 25, 2023 | Pending |
Array
(
[id] => 18786451
[patent_doc_number] => 20230374570
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-11-23
[patent_title] => METHOD AND SYSTEM FOR DETECTING FUNGAL GENES AND KIT FOR USE WITH SAME
[patent_app_type] => utility
[patent_app_number] => 18/295613
[patent_app_country] => US
[patent_app_date] => 2023-04-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12768
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -27
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18295613
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/295613 | METHOD AND SYSTEM FOR DETECTING FUNGAL GENES AND KIT FOR USE WITH SAME | Apr 3, 2023 | Pending |
Array
(
[id] => 18626228
[patent_doc_number] => 20230285009
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-09-14
[patent_title] => N-myristoyltransferase 2 Overexpression in Peripheral Blood and Peripheral Blood Mononuclear Cells is a Marker for Colorectal Cancer
[patent_app_type] => utility
[patent_app_number] => 18/183393
[patent_app_country] => US
[patent_app_date] => 2023-03-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7764
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -6
[patent_words_short_claim] => 93
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18183393
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/183393 | N-myristoyltransferase 2 Overexpression in Peripheral Blood and Peripheral Blood Mononuclear Cells is a Marker for Colorectal Cancer | Mar 13, 2023 | Pending |
Array
(
[id] => 18612731
[patent_doc_number] => 20230279465
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-09-07
[patent_title] => METHODS OF ANCHORING FRAGMENTED NUCLEIC ACID TARGETS IN A POLYMER MATRIX FOR IMAGING
[patent_app_type] => utility
[patent_app_number] => 18/111070
[patent_app_country] => US
[patent_app_date] => 2023-02-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 26851
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18111070
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/111070 | METHODS OF ANCHORING FRAGMENTED NUCLEIC ACID TARGETS IN A POLYMER MATRIX FOR IMAGING | Feb 16, 2023 | Pending |
Array
(
[id] => 18844994
[patent_doc_number] => 20230407398
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-12-21
[patent_title] => Methods and Systems for Detecting Methylation of Fragile X
[patent_app_type] => utility
[patent_app_number] => 18/107877
[patent_app_country] => US
[patent_app_date] => 2023-02-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17196
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 16
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18107877
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/107877 | Methods and Systems for Detecting Methylation of Fragile X | Feb 8, 2023 | Pending |
Array
(
[id] => 18862397
[patent_doc_number] => 20230416833
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-12-28
[patent_title] => SYSTEMS AND METHODS FOR MONITORING OF CANCER USING MINIMAL RESIDUAL DISEASE ANALYSIS
[patent_app_type] => utility
[patent_app_number] => 18/105113
[patent_app_country] => US
[patent_app_date] => 2023-02-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 27748
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -25
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18105113
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/105113 | SYSTEMS AND METHODS FOR MONITORING OF CANCER USING MINIMAL RESIDUAL DISEASE ANALYSIS | Feb 1, 2023 | Pending |
Array
(
[id] => 19318720
[patent_doc_number] => 20240240263
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-07-18
[patent_title] => NUCLEIC ACID DETECTION REAGENT AND DETECTION METHOD FOR MYCOBACTERIUM TUBERCULOSIS
[patent_app_type] => utility
[patent_app_number] => 18/098196
[patent_app_country] => US
[patent_app_date] => 2023-01-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4308
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 57
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18098196
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/098196 | NUCLEIC ACID DETECTION REAGENT AND DETECTION METHOD FOR MYCOBACTERIUM TUBERCULOSIS | Jan 17, 2023 | Pending |
Array
(
[id] => 18708032
[patent_doc_number] => 20230330617
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-10-19
[patent_title] => FLOW CELL SURFACE PATTERNING
[patent_app_type] => utility
[patent_app_number] => 18/145843
[patent_app_country] => US
[patent_app_date] => 2022-12-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 29067
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -7
[patent_words_short_claim] => 76
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18145843
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/145843 | FLOW CELL SURFACE PATTERNING | Dec 21, 2022 | Pending |
Array
(
[id] => 18406157
[patent_doc_number] => 20230167508
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-06-01
[patent_title] => CELL-FREE DNA SIZE DETECTION
[patent_app_type] => utility
[patent_app_number] => 18/054676
[patent_app_country] => US
[patent_app_date] => 2022-11-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 23450
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18054676
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/054676 | CELL-FREE DNA SIZE DETECTION | Nov 10, 2022 | Pending |
Array
(
[id] => 18485349
[patent_doc_number] => 20230212686
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-07-06
[patent_title] => KIT AND METHOD FOR DETECTING TARGET NUCLEIC ACIDS USING MAGNETIC NANOPARTICLES
[patent_app_type] => utility
[patent_app_number] => 17/980974
[patent_app_country] => US
[patent_app_date] => 2022-11-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11105
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 98
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17980974
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/980974 | KIT AND METHOD FOR DETECTING TARGET NUCLEIC ACIDS USING MAGNETIC NANOPARTICLES | Nov 3, 2022 | Pending |
Array
(
[id] => 18266515
[patent_doc_number] => 20230087757
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-03-23
[patent_title] => SYSTEMS AND METHODS FOR USING TRAPPED CHARGE FOR BILAYER FORMATION AND PORE INSERTION IN A NANOPORE ARRAY
[patent_app_type] => utility
[patent_app_number] => 18/051619
[patent_app_country] => US
[patent_app_date] => 2022-11-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17584
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 161
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18051619
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/051619 | SYSTEMS AND METHODS FOR USING TRAPPED CHARGE FOR BILAYER FORMATION AND PORE INSERTION IN A NANOPORE ARRAY | Oct 31, 2022 | Pending |
Array
(
[id] => 18693056
[patent_doc_number] => 20230323442
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-10-12
[patent_title] => CIRCULATING SERUM MICRORNA BIOMARKERS AND METHODS
[patent_app_type] => utility
[patent_app_number] => 18/045065
[patent_app_country] => US
[patent_app_date] => 2022-10-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4923
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -33
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18045065
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/045065 | CIRCULATING SERUM MICRORNA BIOMARKERS AND METHODS | Oct 6, 2022 | Pending |
Array
(
[id] => 18628521
[patent_doc_number] => 20230287386
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-09-14
[patent_title] => STABILIZATION OF NUCLEIC ACIDS IN BIOLOGICAL SAMPLES
[patent_app_type] => utility
[patent_app_number] => 17/961273
[patent_app_country] => US
[patent_app_date] => 2022-10-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6070
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -22
[patent_words_short_claim] => 63
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17961273
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/961273 | STABILIZATION OF NUCLEIC ACIDS IN BIOLOGICAL SAMPLES | Oct 5, 2022 | Pending |
Array
(
[id] => 18293951
[patent_doc_number] => 20230103637
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-04-06
[patent_title] => SEQUENCING OF VIRAL DNA FOR PREDICTING DISEASE RELAPSE
[patent_app_type] => utility
[patent_app_number] => 17/957643
[patent_app_country] => US
[patent_app_date] => 2022-09-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 24664
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -24
[patent_words_short_claim] => 132
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17957643
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/957643 | SEQUENCING OF VIRAL DNA FOR PREDICTING DISEASE RELAPSE | Sep 29, 2022 | Pending |
Array
(
[id] => 18212928
[patent_doc_number] => 20230059192
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-02-23
[patent_title] => CHARACTERIZING OLIGONUCLEOTIDES
[patent_app_type] => utility
[patent_app_number] => 17/821018
[patent_app_country] => US
[patent_app_date] => 2022-08-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 16834
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -64
[patent_words_short_claim] => 199
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17821018
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/821018 | CHARACTERIZING OLIGONUCLEOTIDES | Aug 18, 2022 | Abandoned |
Array
(
[id] => 17982965
[patent_doc_number] => 20220349001
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-11-03
[patent_title] => METHOD FOR SYNCHRONOUSLY SEQUENCING SENSE STRAND AND ANTISENSE STRAND OF DNA
[patent_app_type] => utility
[patent_app_number] => 17/863808
[patent_app_country] => US
[patent_app_date] => 2022-07-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5327
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 100
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17863808
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/863808 | METHOD FOR SYNCHRONOUSLY SEQUENCING SENSE STRAND AND ANTISENSE STRAND OF DNA | Jul 12, 2022 | Pending |
Array
(
[id] => 18109928
[patent_doc_number] => 20230002808
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-01-05
[patent_title] => METHODS FOR ANALYZING SPATIAL LOCATION OF NUCLEIC ACIDS
[patent_app_type] => utility
[patent_app_number] => 17/853256
[patent_app_country] => US
[patent_app_date] => 2022-06-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 33450
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -62
[patent_words_short_claim] => 52
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17853256
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/853256 | METHODS FOR ANALYZING SPATIAL LOCATION OF NUCLEIC ACIDS | Jun 28, 2022 | Pending |
Array
(
[id] => 18077854
[patent_doc_number] => 20220403466
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-12-22
[patent_title] => SEQUENCING SYSTEMS AND METHODS UTILIZING CURVED IMAGING PATHS ON ROTATING SUBSTRATES
[patent_app_type] => utility
[patent_app_number] => 17/839829
[patent_app_country] => US
[patent_app_date] => 2022-06-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5574
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -22
[patent_words_short_claim] => 31
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17839829
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/839829 | SEQUENCING SYSTEMS AND METHODS UTILIZING CURVED IMAGING PATHS ON ROTATING SUBSTRATES | Jun 13, 2022 | Pending |