Sharlene L Leurig
Examiner (ID: 11491)
Most Active Art Unit | 2879 |
Art Unit(s) | 2879 |
Total Applications | 146 |
Issued Applications | 124 |
Pending Applications | 2 |
Abandoned Applications | 20 |
Applications
Application number | Title of the application | Filing Date | Status |
---|---|---|---|
Array
(
[id] => 16557483
[patent_doc_number] => 20210002631
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-01-07
[patent_title] => BACTERIAL DELIVERY VEHICLES COMPRISING TRACER NUCLEIC ACID SEQUENCES
[patent_app_type] => utility
[patent_app_number] => 16/905656
[patent_app_country] => US
[patent_app_date] => 2020-06-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 23518
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -26
[patent_words_short_claim] => 16
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16905656
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/905656 | Bacterial delivery vehicles comprising tracer nucleic acid sequences | Jun 17, 2020 | Issued |
Array
(
[id] => 17351065
[patent_doc_number] => 11225691
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-01-18
[patent_title] => Methods and materials for detecting SNPs and administering measles virus
[patent_app_type] => utility
[patent_app_number] => 16/900704
[patent_app_country] => US
[patent_app_date] => 2020-06-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 17
[patent_figures_cnt] => 22
[patent_no_of_words] => 16644
[patent_no_of_claims] => 4
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 254
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16900704
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/900704 | Methods and materials for detecting SNPs and administering measles virus | Jun 11, 2020 | Issued |
Array
(
[id] => 18909315
[patent_doc_number] => 11872278
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-01-16
[patent_title] => Combination HMPV/RSV RNA vaccines
[patent_app_type] => utility
[patent_app_number] => 16/897734
[patent_app_country] => US
[patent_app_date] => 2020-06-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 24
[patent_figures_cnt] => 41
[patent_no_of_words] => 85263
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 65
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16897734
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/897734 | Combination HMPV/RSV RNA vaccines | Jun 9, 2020 | Issued |
Array
(
[id] => 16296323
[patent_doc_number] => 20200282046
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-09-10
[patent_title] => BETACORONAVIRUS MRNA VACCINE
[patent_app_type] => utility
[patent_app_number] => 16/880829
[patent_app_country] => US
[patent_app_date] => 2020-05-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 85364
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16880829
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/880829 | Betacoronavirus mRNA vaccine | May 20, 2020 | Issued |
Array
(
[id] => 18232136
[patent_doc_number] => 11596680
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-03-07
[patent_title] => Norovirus vaccine
[patent_app_type] => utility
[patent_app_number] => 16/877015
[patent_app_country] => US
[patent_app_date] => 2020-05-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 17
[patent_figures_cnt] => 14
[patent_no_of_words] => 10292
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 142
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16877015
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/877015 | Norovirus vaccine | May 17, 2020 | Issued |
Array
(
[id] => 16252183
[patent_doc_number] => 20200261557
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-08-20
[patent_title] => GLYCOSIDASE REGIMEN FOR TREATMENT OF INFECTIOUS DISEASE
[patent_app_type] => utility
[patent_app_number] => 16/865652
[patent_app_country] => US
[patent_app_date] => 2020-05-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9531
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -43
[patent_words_short_claim] => 21
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16865652
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/865652 | GLYCOSIDASE REGIMEN FOR TREATMENT OF INFECTIOUS DISEASE | May 3, 2020 | Abandoned |
Array
(
[id] => 16283733
[patent_doc_number] => 20200277335
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-09-03
[patent_title] => VIRAL FUSION PROTEIN TREATMENT FOR CCR8 MEDIATED DISEASES
[patent_app_type] => utility
[patent_app_number] => 16/846250
[patent_app_country] => US
[patent_app_date] => 2020-04-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11999
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 80
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16846250
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/846250 | VIRAL FUSION PROTEIN TREATMENT FOR CCR8 MEDIATED DISEASES | Apr 9, 2020 | Abandoned |
Array
(
[id] => 18101245
[patent_doc_number] => 11541114
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-01-03
[patent_title] => Genetically stable recombinant modified vaccinia Ankara (rMVA) vaccines and methods of preparation thereof
[patent_app_type] => utility
[patent_app_number] => 16/834359
[patent_app_country] => US
[patent_app_date] => 2020-03-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 40
[patent_figures_cnt] => 48
[patent_no_of_words] => 26438
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 98
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16834359
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/834359 | Genetically stable recombinant modified vaccinia Ankara (rMVA) vaccines and methods of preparation thereof | Mar 29, 2020 | Issued |
Array
(
[id] => 16483952
[patent_doc_number] => 20200377553
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-12-03
[patent_title] => ANTIBODY SPECIFIC CAPTURE AGENTS, COMPOSITIONS, AND METHODS OF USING AND MAKING
[patent_app_type] => utility
[patent_app_number] => 16/826985
[patent_app_country] => US
[patent_app_date] => 2020-03-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17495
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 43
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16826985
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/826985 | Methods of making anti-GP41 antibody-specific capture agents | Mar 22, 2020 | Issued |
Array
(
[id] => 16139093
[patent_doc_number] => 10702600
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2020-07-07
[patent_title] => Betacoronavirus mRNA vaccine
[patent_app_type] => utility
[patent_app_number] => 16/805587
[patent_app_country] => US
[patent_app_date] => 2020-02-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 24
[patent_figures_cnt] => 41
[patent_no_of_words] => 85239
[patent_no_of_claims] => 26
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 29
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16805587
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/805587 | Betacoronavirus mRNA vaccine | Feb 27, 2020 | Issued |
Array
(
[id] => 16284741
[patent_doc_number] => 20200278343
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-09-03
[patent_title] => DIRECT VISUALIZATION OF INTEGRATED STRESS RESPONSE ACTIVITY
[patent_app_type] => utility
[patent_app_number] => 16/805686
[patent_app_country] => US
[patent_app_date] => 2020-02-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10296
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 45
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16805686
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/805686 | DIRECT VISUALIZATION OF INTEGRATED STRESS RESPONSE ACTIVITY | Feb 27, 2020 | Pending |
Array
(
[id] => 16053329
[patent_doc_number] => 20200188519
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-06-18
[patent_title] => REDUCED FOAMING VACCINE COMPOSITIONS
[patent_app_type] => utility
[patent_app_number] => 16/802089
[patent_app_country] => US
[patent_app_date] => 2020-02-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8733
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 36
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16802089
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/802089 | REDUCED FOAMING VACCINE COMPOSITIONS | Feb 25, 2020 | Abandoned |
Array
(
[id] => 16190809
[patent_doc_number] => 20200231658
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-07-23
[patent_title] => NEUTRALIZING ANTIBODIES TO GP120 AND THEIR USE
[patent_app_type] => utility
[patent_app_number] => 16/786267
[patent_app_country] => US
[patent_app_date] => 2020-02-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 48293
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -33
[patent_words_short_claim] => 168
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16786267
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/786267 | NEUTRALIZING ANTIBODIES TO GP120 AND THEIR USE | Feb 9, 2020 | Abandoned |
Array
(
[id] => 16153911
[patent_doc_number] => 20200215188
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-07-09
[patent_title] => MODULATORS OF MYC, METHODS OF USING THE SAME, AND METHODS OF IDENTIFYING AGENTS THAT MODULATE MYC
[patent_app_type] => utility
[patent_app_number] => 16/742150
[patent_app_country] => US
[patent_app_date] => 2020-01-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 26889
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -12
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16742150
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/742150 | Compositions and methods for modulating immune cells | Jan 13, 2020 | Issued |
Array
(
[id] => 17323616
[patent_doc_number] => 11214611
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-01-04
[patent_title] => Antibody capable of binding to influenza virus intranuclear protein, complex, detection apparatus and detection method using same
[patent_app_type] => utility
[patent_app_number] => 16/726981
[patent_app_country] => US
[patent_app_date] => 2019-12-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 18
[patent_figures_cnt] => 18
[patent_no_of_words] => 8356
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 100
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16726981
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/726981 | Antibody capable of binding to influenza virus intranuclear protein, complex, detection apparatus and detection method using same | Dec 25, 2019 | Issued |
Array
(
[id] => 17323604
[patent_doc_number] => 11214599
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-01-04
[patent_title] => Recombinant simian adenoviral vectors encoding a heterologous fiber protein and uses thereof
[patent_app_type] => utility
[patent_app_number] => 16/710131
[patent_app_country] => US
[patent_app_date] => 2019-12-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 17
[patent_figures_cnt] => 18
[patent_no_of_words] => 23458
[patent_no_of_claims] => 17
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 146
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16710131
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/710131 | Recombinant simian adenoviral vectors encoding a heterologous fiber protein and uses thereof | Dec 10, 2019 | Issued |
Array
(
[id] => 16016053
[patent_doc_number] => 20200182869
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-06-11
[patent_title] => Self-Contained Apparatus and System for Detecting Microorganisms
[patent_app_type] => utility
[patent_app_number] => 16/709567
[patent_app_country] => US
[patent_app_date] => 2019-12-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 21093
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -26
[patent_words_short_claim] => 63
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16709567
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/709567 | Self-Contained Apparatus and System for Detecting Microorganisms | Dec 9, 2019 | Pending |
Array
(
[id] => 17727960
[patent_doc_number] => 11384338
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-07-12
[patent_title] => Oncolytic T7 bacteriophage having cytokine gene and displaying homing peptide on capsid and its use for treating melanoma
[patent_app_type] => utility
[patent_app_number] => 16/685516
[patent_app_country] => US
[patent_app_date] => 2019-11-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 7
[patent_no_of_words] => 7349
[patent_no_of_claims] => 3
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 93
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16685516
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/685516 | Oncolytic T7 bacteriophage having cytokine gene and displaying homing peptide on capsid and its use for treating melanoma | Nov 14, 2019 | Issued |
Array
(
[id] => 18330202
[patent_doc_number] => 11635434
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-04-25
[patent_title] => Betaretrovirus epitopes and related methods of use
[patent_app_type] => utility
[patent_app_number] => 16/681494
[patent_app_country] => US
[patent_app_date] => 2019-11-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 30
[patent_figures_cnt] => 30
[patent_no_of_words] => 27604
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 112
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16681494
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/681494 | Betaretrovirus epitopes and related methods of use | Nov 11, 2019 | Issued |
Array
(
[id] => 17334676
[patent_doc_number] => 20220001007
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-01-06
[patent_title] => COMPOSITIONS AND METHODS
[patent_app_type] => utility
[patent_app_number] => 17/291879
[patent_app_country] => US
[patent_app_date] => 2019-11-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12367
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -20
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17291879
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/291879 | COMPOSITIONS AND METHODS | Nov 4, 2019 | Pending |