Tatyana Zalukaeva
Supervisory Patent Examiner (ID: 4485, Phone: (571)272-1115 , Office: P/3761 )
Most Active Art Unit | 1713 |
Art Unit(s) | 3781, 1713, 3761 |
Total Applications | 783 |
Issued Applications | 459 |
Pending Applications | 53 |
Abandoned Applications | 271 |
Applications
Application number | Title of the application | Filing Date | Status |
---|---|---|---|
Array
(
[id] => 16811062
[patent_doc_number] => 20210133617
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-06
[patent_title] => Hybrid Quantum-Classical Computer System for Parameter-Efficient Circuit Training
[patent_app_type] => utility
[patent_app_number] => 17/084990
[patent_app_country] => US
[patent_app_date] => 2020-10-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9201
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -28
[patent_words_short_claim] => 165
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17084990
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/084990 | Hybrid quantum-classical computer system for parameter-efficient circuit training | Oct 29, 2020 | Issued |
Array
(
[id] => 16811075
[patent_doc_number] => 20210133630
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-06
[patent_title] => MODEL INDUCTION METHOD FOR EXPLAINABLE A.I.
[patent_app_type] => utility
[patent_app_number] => 17/079840
[patent_app_country] => US
[patent_app_date] => 2020-10-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10636
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -26
[patent_words_short_claim] => 218
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17079840
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/079840 | Model induction method for explainable A.I | Oct 25, 2020 | Issued |
Array
(
[id] => 16559484
[patent_doc_number] => 20210004633
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-01-07
[patent_title] => CONVOLUTIONAL NEURAL NETWORK ON PROGRAMMABLE TWO DIMENSIONAL IMAGE PROCESSOR
[patent_app_type] => utility
[patent_app_number] => 17/028097
[patent_app_country] => US
[patent_app_date] => 2020-09-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13078
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 231
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17028097
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/028097 | Convolutional neural network on programmable two dimensional image processor | Sep 21, 2020 | Issued |
Array
(
[id] => 19045842
[patent_doc_number] => 11934957
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-03-19
[patent_title] => Methods, systems, and apparatuses for user-understandable explainable learning models
[patent_app_type] => utility
[patent_app_number] => 17/023515
[patent_app_country] => US
[patent_app_date] => 2020-09-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 16
[patent_no_of_words] => 13230
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 419
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17023515
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/023515 | Methods, systems, and apparatuses for user-understandable explainable learning models | Sep 16, 2020 | Issued |
Array
(
[id] => 16714694
[patent_doc_number] => 20210081841
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-03-18
[patent_title] => VISUALLY CREATING AND MONITORING MACHINE LEARNING MODELS
[patent_app_type] => utility
[patent_app_number] => 17/017594
[patent_app_country] => US
[patent_app_date] => 2020-09-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11490
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 81
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17017594
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/017594 | VISUALLY CREATING AND MONITORING MACHINE LEARNING MODELS | Sep 9, 2020 | Pending |
Array
(
[id] => 16714675
[patent_doc_number] => 20210081822
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-03-18
[patent_title] => USING MACHINE LEARNING ALGORITHMS TO PREPARE TRAINING DATASETS
[patent_app_type] => utility
[patent_app_number] => 17/016244
[patent_app_country] => US
[patent_app_date] => 2020-09-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8386
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17016244
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/016244 | Using machine learning algorithms to prepare training datasets | Sep 8, 2020 | Issued |
Array
(
[id] => 16527814
[patent_doc_number] => 20200401894
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-12-24
[patent_title] => MACHINE-LEARNING TECHNIQUES FOR MONOTONIC NEURAL NETWORKS
[patent_app_type] => utility
[patent_app_number] => 17/015056
[patent_app_country] => US
[patent_app_date] => 2020-09-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10785
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 226
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17015056
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/015056 | Machine-learning techniques for monotonic neural networks | Sep 7, 2020 | Issued |
Array
(
[id] => 19313602
[patent_doc_number] => 12039419
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-07-16
[patent_title] => Automatically labeling functional blocks in pipelines of existing machine learning projects in a corpus adaptable for use in new machine learning projects
[patent_app_type] => utility
[patent_app_number] => 17/010669
[patent_app_country] => US
[patent_app_date] => 2020-09-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 21
[patent_figures_cnt] => 22
[patent_no_of_words] => 16176
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 383
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17010669
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/010669 | Automatically labeling functional blocks in pipelines of existing machine learning projects in a corpus adaptable for use in new machine learning projects | Sep 1, 2020 | Issued |
Array
(
[id] => 17084631
[patent_doc_number] => 20210279638
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-09-09
[patent_title] => TRAINING APPARATUS AND NON-TRANSITORY COMPUTER READABLE MEDIUM
[patent_app_type] => utility
[patent_app_number] => 17/008714
[patent_app_country] => US
[patent_app_date] => 2020-09-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5453
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 88
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17008714
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/008714 | TRAINING APPARATUS AND NON-TRANSITORY COMPUTER READABLE MEDIUM | Aug 31, 2020 | Pending |
Array
(
[id] => 17447003
[patent_doc_number] => 20220067508
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-03-03
[patent_title] => METHODS FOR INCREASING CACHE HIT RATES FOR NEURAL NETWORKS
[patent_app_type] => utility
[patent_app_number] => 17/008360
[patent_app_country] => US
[patent_app_date] => 2020-08-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4118
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 67
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17008360
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/008360 | METHODS FOR INCREASING CACHE HIT RATES FOR NEURAL NETWORKS | Aug 30, 2020 | Pending |
Array
(
[id] => 16958364
[patent_doc_number] => 11062236
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-07-13
[patent_title] => Self-learning analytical attribute and clustering segmentation system
[patent_app_type] => utility
[patent_app_number] => 17/003974
[patent_app_country] => US
[patent_app_date] => 2020-08-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 13
[patent_figures_cnt] => 13
[patent_no_of_words] => 22726
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 303
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17003974
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/003974 | Self-learning analytical attribute and clustering segmentation system | Aug 25, 2020 | Issued |
Array
(
[id] => 17430306
[patent_doc_number] => 20220058015
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-02-24
[patent_title] => OPTIMIZATION FOR OPEN FEATURE LIBRARY MANAGEMENT
[patent_app_type] => utility
[patent_app_number] => 17/000476
[patent_app_country] => US
[patent_app_date] => 2020-08-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11064
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 154
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17000476
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/000476 | OPTIMIZATION FOR OPEN FEATURE LIBRARY MANAGEMENT | Aug 23, 2020 | Pending |
Array
(
[id] => 18826974
[patent_doc_number] => 11842253
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-12-12
[patent_title] => Training encoder model and/or using trained encoder model to determine responsive action(s) for natural language input
[patent_app_type] => utility
[patent_app_number] => 16/995149
[patent_app_country] => US
[patent_app_date] => 2020-08-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 11037
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 291
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16995149
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/995149 | Training encoder model and/or using trained encoder model to determine responsive action(s) for natural language input | Aug 16, 2020 | Issued |
Array
(
[id] => 17388003
[patent_doc_number] => 20220035855
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-02-03
[patent_title] => MARKOV DECISION PROCESS FOR EFFICIENT DATA TRANSFER
[patent_app_type] => utility
[patent_app_number] => 16/943331
[patent_app_country] => US
[patent_app_date] => 2020-07-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12890
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 175
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16943331
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/943331 | Markov decision process for efficient data transfer | Jul 29, 2020 | Issued |
Array
(
[id] => 16439576
[patent_doc_number] => 20200356903
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-11-12
[patent_title] => Predicting User State Using Machine Learning
[patent_app_type] => utility
[patent_app_number] => 16/944030
[patent_app_country] => US
[patent_app_date] => 2020-07-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7031
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 195
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16944030
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/944030 | Predicting user state using machine learning | Jul 29, 2020 | Issued |
Array
(
[id] => 17069772
[patent_doc_number] => 20210271988
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-09-02
[patent_title] => REINFORCEMENT LEARNING WITH ITERATIVE REASONING FOR MERGING IN DENSE TRAFFIC
[patent_app_type] => utility
[patent_app_number] => 16/940680
[patent_app_country] => US
[patent_app_date] => 2020-07-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7485
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 26
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16940680
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/940680 | REINFORCEMENT LEARNING WITH ITERATIVE REASONING FOR MERGING IN DENSE TRAFFIC | Jul 27, 2020 | Pending |
Array
(
[id] => 17372697
[patent_doc_number] => 20220027749
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-01-27
[patent_title] => MACHINE LEARNING MODEL MONITORING
[patent_app_type] => utility
[patent_app_number] => 16/935670
[patent_app_country] => US
[patent_app_date] => 2020-07-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7824
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 79
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16935670
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/935670 | Machine learning model monitoring | Jul 21, 2020 | Issued |
Array
(
[id] => 18528029
[patent_doc_number] => 11715023
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-08-01
[patent_title] => Methods and apparatuses for training one or more model parameters of a predictive parking difficulty model
[patent_app_type] => utility
[patent_app_number] => 16/934047
[patent_app_country] => US
[patent_app_date] => 2020-07-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 5
[patent_no_of_words] => 6572
[patent_no_of_claims] => 8
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 276
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16934047
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/934047 | Methods and apparatuses for training one or more model parameters of a predictive parking difficulty model | Jul 20, 2020 | Issued |
Array
(
[id] => 16424247
[patent_doc_number] => 20200349445
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-11-05
[patent_title] => DATA PROCESSING SYSTEM AND DATA PROCESSING METHOD
[patent_app_type] => utility
[patent_app_number] => 16/929805
[patent_app_country] => US
[patent_app_date] => 2020-07-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 2652
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -3
[patent_words_short_claim] => 151
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16929805
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/929805 | DATA PROCESSING SYSTEM AND DATA PROCESSING METHOD | Jul 14, 2020 | Pending |
Array
(
[id] => 17359117
[patent_doc_number] => 20220019913
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-01-20
[patent_title] => WEIGHTED ADAPTIVE FILTERING BASED LOSS FUNCTION TO PREDICT THE FIRST OCCURRENCE OF MULTIPLE EVENTS IN A SINGLE SHOT
[patent_app_type] => utility
[patent_app_number] => 16/928616
[patent_app_country] => US
[patent_app_date] => 2020-07-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14011
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 302
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16928616
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/928616 | Weighted adaptive filtering based loss function to predict the first occurrence of multiple events in a single shot | Jul 13, 2020 | Issued |