
Thaian N. Ton
Examiner (ID: 2287, Phone: (571)272-0736 , Office: P/1632 )
| Most Active Art Unit | 1632 |
| Art Unit(s) | 1632, OPA |
| Total Applications | 981 |
| Issued Applications | 410 |
| Pending Applications | 107 |
| Abandoned Applications | 463 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 14016637
[patent_doc_number] => 20190070312
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-03-07
[patent_title] => THYMIDINE KINASE
[patent_app_type] => utility
[patent_app_number] => 16/192224
[patent_app_country] => US
[patent_app_date] => 2018-11-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13915
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -4
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16192224
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/192224 | Thymidine kinase | Nov 14, 2018 | Issued |
Array
(
[id] => 14805003
[patent_doc_number] => 20190269111
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-09-05
[patent_title] => ANIMAL MODELS OF CANCER
[patent_app_type] => utility
[patent_app_number] => 16/183858
[patent_app_country] => US
[patent_app_date] => 2018-11-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 28150
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -20
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16183858
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/183858 | ANIMAL MODELS OF CANCER | Nov 7, 2018 | Abandoned |
Array
(
[id] => 14948901
[patent_doc_number] => 10435711
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2019-10-08
[patent_title] => Feeder-free derivation of human-induced pluripotent stem cells with synthetic messenger RNA
[patent_app_type] => utility
[patent_app_number] => 16/181261
[patent_app_country] => US
[patent_app_date] => 2018-11-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 13
[patent_figures_cnt] => 8
[patent_no_of_words] => 9935
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 193
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16181261
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/181261 | Feeder-free derivation of human-induced pluripotent stem cells with synthetic messenger RNA | Nov 4, 2018 | Issued |
Array
(
[id] => 14439053
[patent_doc_number] => 20190177399
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-06-13
[patent_title] => MUTANT FACTOR VIII COMPOSITIONS AND METHODS
[patent_app_type] => utility
[patent_app_number] => 16/164208
[patent_app_country] => US
[patent_app_date] => 2018-10-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13823
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -29
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16164208
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/164208 | Mutant factor VIII compositions and methods | Oct 17, 2018 | Issued |
Array
(
[id] => 15541219
[patent_doc_number] => 10570375
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-02-25
[patent_title] => Adhesive signature-based methods for the isolation of stem cells and cells derived therefrom
[patent_app_type] => utility
[patent_app_number] => 16/149918
[patent_app_country] => US
[patent_app_date] => 2018-10-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 37
[patent_figures_cnt] => 65
[patent_no_of_words] => 16734
[patent_no_of_claims] => 8
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 251
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16149918
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/149918 | Adhesive signature-based methods for the isolation of stem cells and cells derived therefrom | Oct 1, 2018 | Issued |
Array
(
[id] => 15541217
[patent_doc_number] => 10570374
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-02-25
[patent_title] => Adhesive signature-based methods for the isolation of stem cells and cells derived therefrom
[patent_app_type] => utility
[patent_app_number] => 16/148784
[patent_app_country] => US
[patent_app_date] => 2018-10-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 37
[patent_figures_cnt] => 65
[patent_no_of_words] => 16727
[patent_no_of_claims] => 8
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 245
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16148784
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/148784 | Adhesive signature-based methods for the isolation of stem cells and cells derived therefrom | Sep 30, 2018 | Issued |
Array
(
[id] => 15634807
[patent_doc_number] => 10590382
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-03-17
[patent_title] => Medium comprising transforming growth factor beta 1 and basic fibroblast growth factor
[patent_app_type] => utility
[patent_app_number] => 16/120342
[patent_app_country] => US
[patent_app_date] => 2018-09-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 14
[patent_no_of_words] => 14520
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 23
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16120342
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/120342 | Medium comprising transforming growth factor beta 1 and basic fibroblast growth factor | Sep 2, 2018 | Issued |
Array
(
[id] => 15408015
[patent_doc_number] => 20200024329
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-01-23
[patent_title] => METHODS FOR REGULATING ENDOGENOUS PRODUCTION OF LACTOFERRIN AND SUB-PEPTIDES THEREOF
[patent_app_type] => utility
[patent_app_number] => 16/037769
[patent_app_country] => US
[patent_app_date] => 2018-07-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 3378
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 25
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16037769
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/037769 | METHODS FOR REGULATING ENDOGENOUS PRODUCTION OF LACTOFERRIN AND SUB-PEPTIDES THEREOF | Jul 16, 2018 | Abandoned |
Array
(
[id] => 13622913
[patent_doc_number] => 20180363008
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-20
[patent_title] => METHODS AND COMPOSITIONS TO INCREASE SOMATIC CELL NUCLEAR TRANSFER (SCNT) EFFICIENCY BY REMOVING HISTONE H3-LYSINE TRIMETHYLATION
[patent_app_type] => utility
[patent_app_number] => 16/017157
[patent_app_country] => US
[patent_app_date] => 2018-06-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 64143
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 50
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16017157
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/017157 | Methods and compositions to increase somatic cell nuclear transfer (SCNT) efficiency by removing histone H3-lysine trimethylation | Jun 24, 2018 | Issued |
Array
(
[id] => 13604135
[patent_doc_number] => 20180353616
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-13
[patent_title] => COMPOSITIONS AND METHODS FOR mRNA DELIVERY
[patent_app_type] => utility
[patent_app_number] => 15/976813
[patent_app_country] => US
[patent_app_date] => 2018-05-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 30084
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15976813
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/976813 | COMPOSITIONS AND METHODS FOR mRNA DELIVERY | May 9, 2018 | Abandoned |
Array
(
[id] => 13827101
[patent_doc_number] => 20190017035
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-01-17
[patent_title] => METHODS FOR MODULATING CYCLIC NUCLEOTIDE-MEDIATED SIGNALING IN CARDIAC MYOCYTES AND COMPOSITIONS
[patent_app_type] => utility
[patent_app_number] => 15/975711
[patent_app_country] => US
[patent_app_date] => 2018-05-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 21528
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15975711
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/975711 | METHODS FOR MODULATING CYCLIC NUCLEOTIDE-MEDIATED SIGNALING IN CARDIAC MYOCYTES AND COMPOSITIONS | May 8, 2018 | Abandoned |
Array
(
[id] => 13387019
[patent_doc_number] => 20180245051
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-08-30
[patent_title] => METHODS FOR GENERATING INDUCED PLURIPOTENT STEM CELLS VIA CELL CYCLE SYNCHRONIZATION
[patent_app_type] => utility
[patent_app_number] => 15/965313
[patent_app_country] => US
[patent_app_date] => 2018-04-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10271
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -48
[patent_words_short_claim] => 234
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15965313
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/965313 | METHODS FOR GENERATING INDUCED PLURIPOTENT STEM CELLS VIA CELL CYCLE SYNCHRONIZATION | Apr 26, 2018 | Abandoned |
Array
(
[id] => 13778579
[patent_doc_number] => 20190002828
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-01-03
[patent_title] => METHODS FOR PRODUCING ENUCLEATED ERYTHROID CELLS DERIVED FROM PLURIPOTENT STEM CELLS
[patent_app_type] => utility
[patent_app_number] => 15/962989
[patent_app_country] => US
[patent_app_date] => 2018-04-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 46613
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15962989
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/962989 | METHODS FOR PRODUCING ENUCLEATED ERYTHROID CELLS DERIVED FROM PLURIPOTENT STEM CELLS | Apr 24, 2018 | Abandoned |
Array
(
[id] => 13493725
[patent_doc_number] => 20180298405
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-10-18
[patent_title] => METHODS AND COMPOSITIONS TO INCREASE HUMAN SOMATIC CELL NUCLEAR TRANSFER (SCNT) EFFICIENCY BY REMOVING HISTONE H3-LYSINE TRIMETHYLATION, AND DERIVATION OF HUMAN NT-ESC
[patent_app_type] => utility
[patent_app_number] => 15/948781
[patent_app_country] => US
[patent_app_date] => 2018-04-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 75611
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 52
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15948781
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/948781 | METHODS AND COMPOSITIONS TO INCREASE HUMAN SOMATIC CELL NUCLEAR TRANSFER (SCNT) EFFICIENCY BY REMOVING HISTONE H3-LYSINE TRIMETHYLATION, AND DERIVATION OF HUMAN NT-ESC | Apr 8, 2018 | Abandoned |
Array
(
[id] => 13329197
[patent_doc_number] => 20180216136
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-08-02
[patent_title] => DELIVERY METHODS AND COMPOSITIONS FOR NUCLEASE-MEDIATED GENOME ENGINEERING
[patent_app_type] => utility
[patent_app_number] => 15/935908
[patent_app_country] => US
[patent_app_date] => 2018-03-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 22631
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 141
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15935908
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/935908 | Delivery methods and compositions for nuclease-mediated genome engineering | Mar 25, 2018 | Issued |
Array
(
[id] => 13400483
[patent_doc_number] => 20180251784
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-09-06
[patent_title] => METHODS AND COMPOSITIONS FOR TARGETED GENETIC MODIFICATIONS AND METHODS OF USE
[patent_app_type] => utility
[patent_app_number] => 15/902514
[patent_app_country] => US
[patent_app_date] => 2018-02-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 47804
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15902514
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/902514 | Methods and compositions for targeted genetic modifications and methods of use | Feb 21, 2018 | Issued |
Array
(
[id] => 12838354
[patent_doc_number] => 20180171291
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-06-21
[patent_title] => DERIVATION OF ENDOTHELIAL CELLS FROM MAMMALIAN PLUIRPOTENT STEM CELLS
[patent_app_type] => utility
[patent_app_number] => 15/894107
[patent_app_country] => US
[patent_app_date] => 2018-02-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 2829
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 81
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15894107
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/894107 | DERIVATION OF ENDOTHELIAL CELLS FROM MAMMALIAN PLUIRPOTENT STEM CELLS | Feb 11, 2018 | Abandoned |
Array
(
[id] => 16028611
[patent_doc_number] => 10676714
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-06-09
[patent_title] => Suspension culture of human embryonic stem cells
[patent_app_type] => utility
[patent_app_number] => 15/894842
[patent_app_country] => US
[patent_app_date] => 2018-02-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 6
[patent_figures_cnt] => 7
[patent_no_of_words] => 8469
[patent_no_of_claims] => 11
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 84
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15894842
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/894842 | Suspension culture of human embryonic stem cells | Feb 11, 2018 | Issued |
Array
(
[id] => 16319571
[patent_doc_number] => 10779517
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-09-22
[patent_title] => Animal wound model and methods of use
[patent_app_type] => utility
[patent_app_number] => 16/068492
[patent_app_country] => US
[patent_app_date] => 2018-01-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 14
[patent_no_of_words] => 7488
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 45
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16068492
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/068492 | Animal wound model and methods of use | Jan 29, 2018 | Issued |
Array
(
[id] => 14594259
[patent_doc_number] => 10350306
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2019-07-16
[patent_title] => Methods and compositions for treating genetically linked diseases of the eye
[patent_app_type] => utility
[patent_app_number] => 15/876821
[patent_app_country] => US
[patent_app_date] => 2018-01-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 13
[patent_figures_cnt] => 13
[patent_no_of_words] => 21253
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 102
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15876821
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/876821 | Methods and compositions for treating genetically linked diseases of the eye | Jan 21, 2018 | Issued |