
Towfiq Elahi
Examiner (ID: 14595, Phone: (571)270-1687 , Office: P/2625 )
| Most Active Art Unit | 2625 |
| Art Unit(s) | 2625, 2699, 2629 |
| Total Applications | 764 |
| Issued Applications | 570 |
| Pending Applications | 69 |
| Abandoned Applications | 146 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 17269656
[patent_doc_number] => 11195084
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2021-12-07
[patent_title] => Neural network training system
[patent_app_type] => utility
[patent_app_number] => 17/198737
[patent_app_country] => US
[patent_app_date] => 2021-03-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 35
[patent_figures_cnt] => 46
[patent_no_of_words] => 16114
[patent_no_of_claims] => 30
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 309
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17198737
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/198737 | Neural network training system | Mar 10, 2021 | Issued |
Array
(
[id] => 16585222
[patent_doc_number] => 20210019624
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-01-21
[patent_title] => ATTENTION-BASED SEQUENCE TRANSDUCTION NEURAL NETWORKS
[patent_app_type] => utility
[patent_app_number] => 16/988535
[patent_app_country] => US
[patent_app_date] => 2020-08-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8203
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 201
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16988535
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/988535 | ATTENTION-BASED SEQUENCE TRANSDUCTION NEURAL NETWORKS | Aug 6, 2020 | Abandoned |
Array
(
[id] => 16745657
[patent_doc_number] => 10970651
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2021-04-06
[patent_title] => Analytic system for two-stage interactive graphical model selection
[patent_app_type] => utility
[patent_app_number] => 16/904698
[patent_app_country] => US
[patent_app_date] => 2020-06-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 22
[patent_figures_cnt] => 22
[patent_no_of_words] => 16041
[patent_no_of_claims] => 30
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 407
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16904698
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/904698 | Analytic system for two-stage interactive graphical model selection | Jun 17, 2020 | Issued |
Array
(
[id] => 16895502
[patent_doc_number] => 11037059
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-06-15
[patent_title] => Self-supervised back propagation for deep learning
[patent_app_type] => utility
[patent_app_number] => 16/619904
[patent_app_country] => US
[patent_app_date] => 2019-08-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 4
[patent_no_of_words] => 6809
[patent_no_of_claims] => 26
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 452
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16619904
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/619904 | Self-supervised back propagation for deep learning | Aug 22, 2019 | Issued |
Array
(
[id] => 16217685
[patent_doc_number] => 10733502
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-08-04
[patent_title] => Training policy neural networks using path consistency learning
[patent_app_type] => utility
[patent_app_number] => 16/504934
[patent_app_country] => US
[patent_app_date] => 2019-07-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 3
[patent_figures_cnt] => 3
[patent_no_of_words] => 9633
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 460
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16504934
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/504934 | Training policy neural networks using path consistency learning | Jul 7, 2019 | Issued |
Array
(
[id] => 16486263
[patent_doc_number] => 20200379868
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-12-03
[patent_title] => ANOMALY DETECTION USING DEEP LEARNING MODELS
[patent_app_type] => utility
[patent_app_number] => 16/428302
[patent_app_country] => US
[patent_app_date] => 2019-05-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8614
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 161
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16428302
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/428302 | Anomaly detection using deep learning models | May 30, 2019 | Issued |
Array
(
[id] => 15368239
[patent_doc_number] => 20200019884
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-01-16
[patent_title] => BINARY SIGNAL CLASSIFIERS THAT TOLERATE INCORRECT TRAINING DATA
[patent_app_type] => utility
[patent_app_number] => 16/414584
[patent_app_country] => US
[patent_app_date] => 2019-05-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17530
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 242
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16414584
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/414584 | Binary signal classifiers that tolerate incorrect training data | May 15, 2019 | Issued |
Array
(
[id] => 16193321
[patent_doc_number] => 20200234170
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-07-23
[patent_title] => METHOD FOR CLASSIFYING ECO-GEOLOGICAL ENVIRONMENT TYPES BASED ON COAL RESOURCE EXPLOITATION
[patent_app_type] => utility
[patent_app_number] => 16/639138
[patent_app_country] => US
[patent_app_date] => 2019-01-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6762
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 257
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16639138
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/639138 | METHOD FOR CLASSIFYING ECO-GEOLOGICAL ENVIRONMENT TYPES BASED ON COAL RESOURCE EXPLOITATION | Jan 24, 2019 | Abandoned |
Array
(
[id] => 15887935
[patent_doc_number] => 10650313
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-05-12
[patent_title] => Methods and systems of assertional simulation
[patent_app_type] => utility
[patent_app_number] => 16/238122
[patent_app_country] => US
[patent_app_date] => 2019-01-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 45
[patent_figures_cnt] => 47
[patent_no_of_words] => 123846
[patent_no_of_claims] => 35
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 448
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16238122
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/238122 | Methods and systems of assertional simulation | Jan 1, 2019 | Issued |
Array
(
[id] => 15091381
[patent_doc_number] => 20190340502
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-11-07
[patent_title] => PROCESSING GROUP CONVOLUTION IN NEURAL NETWORK PROCESSOR
[patent_app_type] => utility
[patent_app_number] => 15/971635
[patent_app_country] => US
[patent_app_date] => 2018-05-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8897
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 88
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15971635
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/971635 | Processing group convolution in neural network processor | May 3, 2018 | Issued |
Array
(
[id] => 15043441
[patent_doc_number] => 20190332725
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-10-31
[patent_title] => METHOD AND SYSTEM FOR DESIGNING ELECTRICAL MACHINES USING REINFORCEMENT LEARNING
[patent_app_type] => utility
[patent_app_number] => 15/920949
[patent_app_country] => US
[patent_app_date] => 2018-04-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 3929
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 140
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15920949
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/920949 | Method and system for designing electrical machines using reinforcement learning | Apr 29, 2018 | Issued |
Array
(
[id] => 17288685
[patent_doc_number] => 11205236
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2021-12-21
[patent_title] => System and method for facilitating real estate transactions by analyzing user-provided data
[patent_app_type] => utility
[patent_app_number] => 15/879210
[patent_app_country] => US
[patent_app_date] => 2018-01-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 11
[patent_no_of_words] => 17514
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 323
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15879210
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/879210 | System and method for facilitating real estate transactions by analyzing user-provided data | Jan 23, 2018 | Issued |
Array
(
[id] => 17031770
[patent_doc_number] => 11093584
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-08-17
[patent_title] => Probability density ratio estimation
[patent_app_type] => utility
[patent_app_number] => 15/797051
[patent_app_country] => US
[patent_app_date] => 2017-10-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 7696
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 200
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15797051
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/797051 | Probability density ratio estimation | Oct 29, 2017 | Issued |
Array
(
[id] => 16972808
[patent_doc_number] => 11068781
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-07-20
[patent_title] => Temporal ensembling for semi-supervised learning
[patent_app_type] => utility
[patent_app_number] => 15/721433
[patent_app_country] => US
[patent_app_date] => 2017-09-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 11
[patent_no_of_words] => 10369
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 202
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15721433
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/721433 | Temporal ensembling for semi-supervised learning | Sep 28, 2017 | Issued |
Array
(
[id] => 14108225
[patent_doc_number] => 20190095788
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-03-28
[patent_title] => SUPERVISED EXPLICIT SEMANTIC ANALYSIS
[patent_app_type] => utility
[patent_app_number] => 15/717612
[patent_app_country] => US
[patent_app_date] => 2017-09-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6132
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 193
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15717612
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/717612 | SUPERVISED EXPLICIT SEMANTIC ANALYSIS | Sep 26, 2017 | Abandoned |
Array
(
[id] => 16759000
[patent_doc_number] => 10977552
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-04-13
[patent_title] => ISA-based compression in distributed training of neural networks
[patent_app_type] => utility
[patent_app_number] => 15/709955
[patent_app_country] => US
[patent_app_date] => 2017-09-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 20
[patent_figures_cnt] => 20
[patent_no_of_words] => 11570
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 263
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15709955
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/709955 | ISA-based compression in distributed training of neural networks | Sep 19, 2017 | Issued |
Array
(
[id] => 13707751
[patent_doc_number] => 20170364830
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-12-21
[patent_title] => MACHINE LEARNING FOR AUTOMATED ORGANIZATION SYSTEM AND METHOD
[patent_app_type] => utility
[patent_app_number] => 15/624012
[patent_app_country] => US
[patent_app_date] => 2017-06-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11208
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 135
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15624012
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/624012 | MACHINE LEARNING FOR AUTOMATED ORGANIZATION SYSTEM AND METHOD | Jun 14, 2017 | Abandoned |
Array
(
[id] => 13596487
[patent_doc_number] => 20180349792
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-06
[patent_title] => METHOD AND APPARATUS FOR BUILDING A PARKING OCCUPANCY MODEL
[patent_app_type] => utility
[patent_app_number] => 15/610237
[patent_app_country] => US
[patent_app_date] => 2017-05-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 15041
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 80
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15610237
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/610237 | METHOD AND APPARATUS FOR BUILDING A PARKING OCCUPANCY MODEL | May 30, 2017 | Abandoned |
Array
(
[id] => 17165121
[patent_doc_number] => 11151221
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-10-19
[patent_title] => Probability density ratio estimation
[patent_app_type] => utility
[patent_app_number] => 15/452196
[patent_app_country] => US
[patent_app_date] => 2017-03-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 7701
[patent_no_of_claims] => 15
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 248
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15452196
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/452196 | Probability density ratio estimation | Mar 6, 2017 | Issued |
Array
(
[id] => 16409237
[patent_doc_number] => 10817796
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-10-27
[patent_title] => Systems and methods for machine learning
[patent_app_type] => utility
[patent_app_number] => 15/452438
[patent_app_country] => US
[patent_app_date] => 2017-03-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 12
[patent_no_of_words] => 18127
[patent_no_of_claims] => 12
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 277
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15452438
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/452438 | Systems and methods for machine learning | Mar 6, 2017 | Issued |