
Valarie E. Bertoglio
Examiner (ID: 294, Phone: (571)272-0725 , Office: P/1632 )
| Most Active Art Unit | 1632 |
| Art Unit(s) | 1632 |
| Total Applications | 1278 |
| Issued Applications | 615 |
| Pending Applications | 184 |
| Abandoned Applications | 505 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 17480637
[patent_doc_number] => 20220088141
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-03-24
[patent_title] => LYMPHANGIOGENESIS-PROMOTING AGENTS
[patent_app_type] => utility
[patent_app_number] => 17/240373
[patent_app_country] => US
[patent_app_date] => 2021-04-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14962
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -1
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17240373
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/240373 | LYMPHANGIOGENESIS-PROMOTING AGENTS | Apr 25, 2021 | Abandoned |
Array
(
[id] => 17467809
[patent_doc_number] => 11274279
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-03-15
[patent_title] => Method of generating hepatic cells
[patent_app_type] => utility
[patent_app_number] => 17/206451
[patent_app_country] => US
[patent_app_date] => 2021-03-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 27
[patent_figures_cnt] => 51
[patent_no_of_words] => 23767
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 89
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17206451
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/206451 | Method of generating hepatic cells | Mar 18, 2021 | Issued |
Array
(
[id] => 16932808
[patent_doc_number] => 20210198697
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-07-01
[patent_title] => METHODS FOR MAKING AND USING MODIFIED OOCYTES
[patent_app_type] => utility
[patent_app_number] => 17/201977
[patent_app_country] => US
[patent_app_date] => 2021-03-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 20514
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 111
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17201977
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/201977 | METHODS FOR MAKING AND USING MODIFIED OOCYTES | Mar 14, 2021 | Abandoned |
Array
(
[id] => 20262340
[patent_doc_number] => 12433304
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-10-07
[patent_title] => Ready-to-use fly neonate larvae with extended shelf-life and methods of producing same
[patent_app_type] => utility
[patent_app_number] => 17/906145
[patent_app_country] => US
[patent_app_date] => 2021-03-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 10
[patent_no_of_words] => 4767
[patent_no_of_claims] => 4
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 197
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17906145
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/906145 | Ready-to-use fly neonate larvae with extended shelf-life and methods of producing same | Mar 13, 2021 | Issued |
Array
(
[id] => 18297287
[patent_doc_number] => 20230106973
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-04-06
[patent_title] => METHODS FOR EXPANSION OF TUMOR INFILTRATING LYMPHOCYTES AND USE THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/904479
[patent_app_country] => US
[patent_app_date] => 2021-02-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 24480
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -90
[patent_words_short_claim] => 95
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17904479
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/904479 | METHODS FOR EXPANSION OF TUMOR INFILTRATING LYMPHOCYTES AND USE THEREOF | Feb 15, 2021 | Pending |
Array
(
[id] => 16867647
[patent_doc_number] => 20210161114
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-06-03
[patent_title] => Vip3A RESISTANT SPODOPTERA FRUGIPERDA
[patent_app_type] => utility
[patent_app_number] => 17/173563
[patent_app_country] => US
[patent_app_date] => 2021-02-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14242
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -12
[patent_words_short_claim] => 56
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17173563
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/173563 | Vip3A RESISTANT SPODOPTERA FRUGIPERDA | Feb 10, 2021 | Abandoned |
Array
(
[id] => 17049786
[patent_doc_number] => 20210259220
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-08-26
[patent_title] => GENETICALLY MODIFIED NON-HUMAN ANIMAL WITH HUMAN OR CHIMERIC CD3e
[patent_app_type] => utility
[patent_app_number] => 17/168603
[patent_app_country] => US
[patent_app_date] => 2021-02-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 23733
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17168603
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/168603 | Genetically modified non-human animal with human or chimeric CD3e | Feb 4, 2021 | Issued |
Array
(
[id] => 16990262
[patent_doc_number] => 20210228682
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-07-29
[patent_title] => METHOD FOR IDENTIFYING, EXPANDING, AND REMOVING ADULT STEM CELLS AND CANCER STEM CELLS
[patent_app_type] => utility
[patent_app_number] => 17/161376
[patent_app_country] => US
[patent_app_date] => 2021-01-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 30180
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17161376
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/161376 | METHOD FOR IDENTIFYING, EXPANDING, AND REMOVING ADULT STEM CELLS AND CANCER STEM CELLS | Jan 27, 2021 | Abandoned |
Array
(
[id] => 18287679
[patent_doc_number] => 20230103151
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-03-30
[patent_title] => tRNA OVEREXPRESSION AS A THERAPEUTIC APPROACH FOR CHARCOT-MARIE-TOOTH NEUROPATHY ASSOCIATED WITH MUTATIONS IN tRNA SYNTHETASES
[patent_app_type] => utility
[patent_app_number] => 17/759574
[patent_app_country] => US
[patent_app_date] => 2021-01-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4056
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 51
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17759574
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/759574 | tRNA OVEREXPRESSION AS A THERAPEUTIC APPROACH FOR CHARCOT-MARIE-TOOTH NEUROPATHY ASSOCIATED WITH MUTATIONS IN tRNA SYNTHETASES | Jan 26, 2021 | Pending |
Array
(
[id] => 18164085
[patent_doc_number] => 20230030680
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-02-02
[patent_title] => CHIMERIC GMCSF-IL18 RECEPTOR
[patent_app_type] => utility
[patent_app_number] => 17/791181
[patent_app_country] => US
[patent_app_date] => 2021-01-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 28547
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -28
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17791181
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/791181 | CHIMERIC GMCSF-IL18 RECEPTOR | Jan 5, 2021 | Pending |
Array
(
[id] => 16948409
[patent_doc_number] => 20210207100
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-07-08
[patent_title] => HUMAN IPSC-BASED DERIVATION OF NK AND T-CELLS USING EARLY NOTCH INDUCTION
[patent_app_type] => utility
[patent_app_number] => 17/131887
[patent_app_country] => US
[patent_app_date] => 2020-12-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 61960
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -26
[patent_words_short_claim] => 38
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17131887
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/131887 | Human iPSC-based derivation of NK and T-cells using early Notch induction | Dec 22, 2020 | Issued |
Array
(
[id] => 18733420
[patent_doc_number] => 11802143
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-10-31
[patent_title] => Therapeutic agents
[patent_app_type] => utility
[patent_app_number] => 17/118045
[patent_app_country] => US
[patent_app_date] => 2020-12-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 27
[patent_figures_cnt] => 30
[patent_no_of_words] => 7834
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 170
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17118045
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/118045 | Therapeutic agents | Dec 9, 2020 | Issued |
Array
(
[id] => 16748220
[patent_doc_number] => 20210100229
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-04-08
[patent_title] => Non-Human Animals Expressing Humanized CD3 Complex
[patent_app_type] => utility
[patent_app_number] => 17/118241
[patent_app_country] => US
[patent_app_date] => 2020-12-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18208
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -35
[patent_words_short_claim] => 16
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17118241
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/118241 | Non-human animals expressing humanized CD3 complex | Dec 9, 2020 | Issued |
Array
(
[id] => 16718622
[patent_doc_number] => 20210085769
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-03-25
[patent_title] => CHIMERIC ANTIGEN RECEPTOR SPECIFIC FOR TUMOR CELLS
[patent_app_type] => utility
[patent_app_number] => 17/094855
[patent_app_country] => US
[patent_app_date] => 2020-11-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10652
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 65
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17094855
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/094855 | CHIMERIC ANTIGEN RECEPTOR SPECIFIC FOR TUMOR CELLS | Nov 10, 2020 | Abandoned |
Array
(
[id] => 16808227
[patent_doc_number] => 20210130780
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-06
[patent_title] => METHODS OF GENERATING ENUCLEATED ERYTHROID CELLS USING MYO-INOSITOL
[patent_app_type] => utility
[patent_app_number] => 17/089409
[patent_app_country] => US
[patent_app_date] => 2020-11-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 122742
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -26
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17089409
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/089409 | METHODS OF GENERATING ENUCLEATED ERYTHROID CELLS USING MYO-INOSITOL | Nov 3, 2020 | Abandoned |
Array
(
[id] => 18158568
[patent_doc_number] => 20230025160
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-01-26
[patent_title] => CAR T CELLS WITH ENHANCED METABOLIC FITNESS
[patent_app_type] => utility
[patent_app_number] => 17/756386
[patent_app_country] => US
[patent_app_date] => 2020-11-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 16276
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -12
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17756386
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/756386 | CAR T CELLS WITH ENHANCED METABOLIC FITNESS | Nov 3, 2020 | Pending |
Array
(
[id] => 19170890
[patent_doc_number] => 20240156864
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-05-16
[patent_title] => METHODS AND COMPOSITIONS FOR CHIMERIC ANTIGEN RECEPTOR TARGETING CANCER CELLS
[patent_app_type] => utility
[patent_app_number] => 17/773281
[patent_app_country] => US
[patent_app_date] => 2020-10-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 20294
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -20
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17773281
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/773281 | METHODS AND COMPOSITIONS FOR CHIMERIC ANTIGEN RECEPTOR TARGETING CANCER CELLS | Oct 29, 2020 | Pending |
Array
(
[id] => 16656029
[patent_doc_number] => 20210052665
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-02-25
[patent_title] => METHODS TO INDUCE TERMINAL DIFFERENTIATION IN STEM CELLS BY INTERFERING WITH DNA REPLICATION, METHODS OF INDUCING PANCREATIC DIFFERENTIATION, AND DIFFERENTIATED CELLS OBTAINED THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/081027
[patent_app_country] => US
[patent_app_date] => 2020-10-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17164
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -20
[patent_words_short_claim] => 52
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17081027
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/081027 | METHODS TO INDUCE TERMINAL DIFFERENTIATION IN STEM CELLS BY INTERFERING WITH DNA REPLICATION, METHODS OF INDUCING PANCREATIC DIFFERENTIATION, AND DIFFERENTIATED CELLS OBTAINED THEREOF | Oct 26, 2020 | Pending |
Array
(
[id] => 18058295
[patent_doc_number] => 20220389381
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-12-08
[patent_title] => GENE EDITING OF TUMOR INFILTRATING LYMPHOCYTES AND USES OF SAME IN IMMUNOTHERAPY
[patent_app_type] => utility
[patent_app_number] => 17/771723
[patent_app_country] => US
[patent_app_date] => 2020-10-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 91505
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -206
[patent_words_short_claim] => 23
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17771723
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/771723 | GENE EDITING OF TUMOR INFILTRATING LYMPHOCYTES AND USES OF SAME IN IMMUNOTHERAPY | Oct 22, 2020 | Pending |
Array
(
[id] => 19065758
[patent_doc_number] => 20240100184
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-03-28
[patent_title] => METHODS OF PRECISE GENOME EDITING BY IN SITU CUT AND PASTE (ICAP)
[patent_app_type] => utility
[patent_app_number] => 17/767944
[patent_app_country] => US
[patent_app_date] => 2020-10-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 24110
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 163
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17767944
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/767944 | METHODS OF PRECISE GENOME EDITING BY IN SITU CUT AND PASTE (ICAP) | Oct 19, 2020 | Pending |