Application number | Title of the application | Filing Date | Status |
---|
Array
(
[id] => 16909225
[patent_doc_number] => 11041257
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-06-22
[patent_title] => Shielding member including a plurality of shielding plates arranged without gaps therebetween in plan view and apparatus for growing single crystals
[patent_app_type] => utility
[patent_app_number] => 16/391566
[patent_app_country] => US
[patent_app_date] => 2019-04-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 6
[patent_figures_cnt] => 7
[patent_no_of_words] => 4422
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 161
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16391566
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/391566 | Shielding member including a plurality of shielding plates arranged without gaps therebetween in plan view and apparatus for growing single crystals | Apr 22, 2019 | Issued |
Array
(
[id] => 17414467
[patent_doc_number] => 20220049371
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-02-17
[patent_title] => MBE SYSTEM WITH DIRECT EVAPORATION PUMP TO COLD PANEL
[patent_app_type] => utility
[patent_app_number] => 16/758622
[patent_app_country] => US
[patent_app_date] => 2019-04-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 1850
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -11
[patent_words_short_claim] => 51
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16758622
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/758622 | MBE system with direct evaporation pump to cold panel | Apr 21, 2019 | Issued |
Array
(
[id] => 15039521
[patent_doc_number] => 20190330765
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-10-31
[patent_title] => HEAT-INSULATING SHIELD MEMBER AND SINGLE CRYSTAL MANUFACTURING APPARATUS HAVING THE SAME
[patent_app_type] => utility
[patent_app_number] => 16/389347
[patent_app_country] => US
[patent_app_date] => 2019-04-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6567
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -8
[patent_words_short_claim] => 136
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16389347
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/389347 | Heat-insulating shield member and single crystal manufacturing apparatus having the same | Apr 18, 2019 | Issued |
Array
(
[id] => 15039513
[patent_doc_number] => 20190330761
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-10-31
[patent_title] => SiC SINGLE CRYSTAL GROWTH APPARATUS AND GROWTH METHOD OF SiC SINGLE CRYSTAL
[patent_app_type] => utility
[patent_app_number] => 16/388968
[patent_app_country] => US
[patent_app_date] => 2019-04-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6069
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -6
[patent_words_short_claim] => 78
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16388968
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/388968 | SiC single crystal growth apparatus containing movable heat-insulating material and growth method of SiC single crystal using the same | Apr 18, 2019 | Issued |
Array
(
[id] => 19060024
[patent_doc_number] => 11939231
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-03-26
[patent_title] => Method of synthesizing molybdenum oxychloride by reacting molybdenum oxide powder and chlorine gas and growing crystals of molybdenum oxychloride from the gaseous raw material
[patent_app_type] => utility
[patent_app_number] => 16/955547
[patent_app_country] => US
[patent_app_date] => 2019-04-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 6
[patent_figures_cnt] => 7
[patent_no_of_words] => 6409
[patent_no_of_claims] => 6
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 120
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16955547
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/955547 | Method of synthesizing molybdenum oxychloride by reacting molybdenum oxide powder and chlorine gas and growing crystals of molybdenum oxychloride from the gaseous raw material | Apr 11, 2019 | Issued |
Array
(
[id] => 14963921
[patent_doc_number] => 20190309439
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-10-10
[patent_title] => METHOD OF MANUFACTURING A GARNET TYPE CRYSTAL
[patent_app_type] => utility
[patent_app_number] => 16/372405
[patent_app_country] => US
[patent_app_date] => 2019-04-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4488
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -3
[patent_words_short_claim] => 69
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16372405
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/372405 | METHOD OF MANUFACTURING A GARNET TYPE CRYSTAL | Apr 1, 2019 | Abandoned |
Array
(
[id] => 17649997
[patent_doc_number] => 11352712
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2022-06-07
[patent_title] => Method for controlling fiber growth in a laser heated pedestal growth system by controlling a laser power output, a pedestal feedstock rate of motion, and a draw rate
[patent_app_type] => utility
[patent_app_number] => 16/368425
[patent_app_country] => US
[patent_app_date] => 2019-03-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 10
[patent_figures_cnt] => 10
[patent_no_of_words] => 4953
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 257
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16368425
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/368425 | Method for controlling fiber growth in a laser heated pedestal growth system by controlling a laser power output, a pedestal feedstock rate of motion, and a draw rate | Mar 27, 2019 | Issued |
Array
(
[id] => 16692427
[patent_doc_number] => 20210074906
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-03-11
[patent_title] => METHOD FOR MANUFACTURING A CRYSTALLINE LAYER OF PZT MATERIAL, AND SUBSTRATE FOR EPITAXIAL GROWING A CYRSTALLINE LAYER OF PZT MATERIAL
[patent_app_type] => utility
[patent_app_number] => 17/042657
[patent_app_country] => US
[patent_app_date] => 2019-03-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 3623
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 28
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17042657
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/042657 | Method for producing a crystalline layer of PZT material by transferring a seed layer of SrTiO | Mar 25, 2019 | Issued |
Array
(
[id] => 18794242
[patent_doc_number] => 11828000
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-11-28
[patent_title] => Method for producing a monocrystalline layer of lithium niobate by transferring a seed layer of yttria-stabilized zirconia to a silicon carrier substrate and epitaxially growing the monocrystalline layer of lithium niobate and substrate for epitaxial growth of a monocrystalline layer of lithium niobate
[patent_app_type] => utility
[patent_app_number] => 17/042737
[patent_app_country] => US
[patent_app_date] => 2019-03-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 5
[patent_no_of_words] => 3411
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 71
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17042737
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/042737 | Method for producing a monocrystalline layer of lithium niobate by transferring a seed layer of yttria-stabilized zirconia to a silicon carrier substrate and epitaxially growing the monocrystalline layer of lithium niobate and substrate for epitaxial growth of a monocrystalline layer of lithium niobate | Mar 25, 2019 | Issued |
Array
(
[id] => 19397355
[patent_doc_number] => 12071706
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-08-27
[patent_title] => Process for producing a monoocrystalline layer of AlN material by transferring a SiC-6H seed to a Si carrier substrate and epitaxially growing the monocrystalline layer of AlN material and substrate for the epitaxial growth of a monocrystalline layer of AlN material
[patent_app_type] => utility
[patent_app_number] => 17/041371
[patent_app_country] => US
[patent_app_date] => 2019-03-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 5
[patent_no_of_words] => 3344
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 81
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17041371
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/041371 | Process for producing a monoocrystalline layer of AlN material by transferring a SiC-6H seed to a Si carrier substrate and epitaxially growing the monocrystalline layer of AlN material and substrate for the epitaxial growth of a monocrystalline layer of AlN material | Mar 25, 2019 | Issued |
Array
(
[id] => 14897833
[patent_doc_number] => 20190292682
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-09-26
[patent_title] => METHOD OF MANUFACTURING CRYSTAL SUBSTRATE AND CRYSTAL SUBSTRATE
[patent_app_type] => utility
[patent_app_number] => 16/353115
[patent_app_country] => US
[patent_app_date] => 2019-03-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13319
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 53
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16353115
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/353115 | Group III nitride crystal substrate having a diameter of 4 inches or more and a curved c-plane with a radius of curvature of 15 m or more | Mar 13, 2019 | Issued |
Array
(
[id] => 16746357
[patent_doc_number] => 10971358
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-04-06
[patent_title] => Method of making a peeled magnesium oxide substrate using laser irradiation
[patent_app_type] => utility
[patent_app_number] => 16/296702
[patent_app_country] => US
[patent_app_date] => 2019-03-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 21
[patent_figures_cnt] => 30
[patent_no_of_words] => 5705
[patent_no_of_claims] => 8
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 263
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16296702
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/296702 | Method of making a peeled magnesium oxide substrate using laser irradiation | Mar 7, 2019 | Issued |
Array
(
[id] => 16682037
[patent_doc_number] => 10941505
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2021-03-09
[patent_title] => Growing two-dimensional materials through heterogeneous pyrolysis
[patent_app_type] => utility
[patent_app_number] => 16/292612
[patent_app_country] => US
[patent_app_date] => 2019-03-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 32
[patent_figures_cnt] => 56
[patent_no_of_words] => 9751
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 130
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16292612
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/292612 | Growing two-dimensional materials through heterogeneous pyrolysis | Mar 4, 2019 | Issued |
Array
(
[id] => 14509125
[patent_doc_number] => 20190198217
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-06-27
[patent_title] => RF CHOKE FOR GAS DELIVERY TO AN RF DRIVEN ELECTRODE IN A PLASMA PROCESSING APPARATUS
[patent_app_type] => utility
[patent_app_number] => 16/292269
[patent_app_country] => US
[patent_app_date] => 2019-03-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4580
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 25
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16292269
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/292269 | RF CHOKE FOR GAS DELIVERY TO AN RF DRIVEN ELECTRODE IN A PLASMA PROCESSING APPARATUS | Mar 3, 2019 | Abandoned |
Array
(
[id] => 14868949
[patent_doc_number] => 20190284716
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-09-19
[patent_title] => APPARATUS AND METHOD OF PRODUCING DIAMOND AND PERFORMING REAL TIME IN SITU ANALYSIS
[patent_app_type] => utility
[patent_app_number] => 16/285116
[patent_app_country] => US
[patent_app_date] => 2019-02-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4122
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -34
[patent_words_short_claim] => 55
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16285116
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/285116 | APPARATUS AND METHOD OF PRODUCING DIAMOND AND PERFORMING REAL TIME IN SITU ANALYSIS | Feb 24, 2019 | Abandoned |
Array
(
[id] => 16552888
[patent_doc_number] => 10886053
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-01-05
[patent_title] => RF choke for gas delivery to an RF driven electrode in a plasma processing apparatus
[patent_app_type] => utility
[patent_app_number] => 16/282085
[patent_app_country] => US
[patent_app_date] => 2019-02-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 18
[patent_no_of_words] => 4580
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 38
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16282085
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/282085 | RF choke for gas delivery to an RF driven electrode in a plasma processing apparatus | Feb 20, 2019 | Issued |
Array
(
[id] => 16571155
[patent_doc_number] => 20210010161
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-01-14
[patent_title] => METHOD FOR MANUFACTURING SILICON CARBIDE SINGLE CRYSTAL
[patent_app_type] => utility
[patent_app_number] => 16/980183
[patent_app_country] => US
[patent_app_date] => 2019-02-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 3903
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => 0
[patent_words_short_claim] => 98
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16980183
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/980183 | METHOD FOR MANUFACTURING SILICON CARBIDE SINGLE CRYSTAL | Feb 17, 2019 | Abandoned |
Array
(
[id] => 16571151
[patent_doc_number] => 20210010157
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-01-14
[patent_title] => METHOD FOR MANUFACTURING SILICON CARBIDE SINGLE CRYSTAL
[patent_app_type] => utility
[patent_app_number] => 16/980144
[patent_app_country] => US
[patent_app_date] => 2019-02-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4131
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -3
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16980144
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/980144 | Method for manufacturing a silicon carbide single crystal by adjusting the position of a hole in a top of the growth container relative to the off angle of the silicon carbide substrate | Feb 14, 2019 | Issued |
Array
(
[id] => 16865748
[patent_doc_number] => 11024501
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-06-01
[patent_title] => Carrier-assisted method for parting crystalline material along laser damage region
[patent_app_type] => utility
[patent_app_number] => 16/274045
[patent_app_country] => US
[patent_app_date] => 2019-02-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 18
[patent_figures_cnt] => 67
[patent_no_of_words] => 25847
[patent_no_of_claims] => 30
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 122
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16274045
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/274045 | Carrier-assisted method for parting crystalline material along laser damage region | Feb 11, 2019 | Issued |
Array
(
[id] => 18369401
[patent_doc_number] => 11649559
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-05-16
[patent_title] => Method of utilizing a degassing chamber to reduce arsenic outgassing following deposition of arsenic-containing material on a substrate
[patent_app_type] => utility
[patent_app_number] => 16/266646
[patent_app_country] => US
[patent_app_date] => 2019-02-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 4
[patent_no_of_words] => 3303
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 230
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16266646
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/266646 | Method of utilizing a degassing chamber to reduce arsenic outgassing following deposition of arsenic-containing material on a substrate | Feb 3, 2019 | Issued |