Victor R Kostak
Examiner (ID: 1879)
Most Active Art Unit | 2602 |
Art Unit(s) | 2622, 2602, 2611, 2422, 2614, 2711, 2899 |
Total Applications | 3434 |
Issued Applications | 2947 |
Pending Applications | 96 |
Abandoned Applications | 357 |
Applications
Application number | Title of the application | Filing Date | Status |
---|---|---|---|
Array
(
[id] => 6159364
[patent_doc_number] => 20110192342
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2011-08-11
[patent_title] => 'Method Of Manufacturing Dislocation-Free Single-Crystal Silicon By Czochralski Method'
[patent_app_type] => utility
[patent_app_number] => 13/017364
[patent_app_country] => US
[patent_app_date] => 2011-01-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 1
[patent_figures_cnt] => 1
[patent_no_of_words] => 2576
[patent_no_of_claims] => 5
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] => publications/A1/0192/20110192342.pdf
[firstpage_image] =>[orig_patent_app_number] => 13017364
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/017364 | Method Of Manufacturing Dislocation-Free Single-Crystal Silicon By Czochralski Method | Jan 30, 2011 | Abandoned |
Array
(
[id] => 6041438
[patent_doc_number] => 20110203515
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2011-08-25
[patent_title] => 'Device for crystal growth at intermediate temperatures using controlled semi-active cooling'
[patent_app_type] => utility
[patent_app_number] => 12/931288
[patent_app_country] => US
[patent_app_date] => 2011-01-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 29
[patent_figures_cnt] => 29
[patent_no_of_words] => 16030
[patent_no_of_claims] => 95
[patent_no_of_ind_claims] => 5
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] => publications/A1/0203/20110203515.pdf
[firstpage_image] =>[orig_patent_app_number] => 12931288
[rel_patent_id] =>[rel_patent_doc_number] =>) 12/931288 | Device for crystal growth at intermediate temperatures using controlled semi-active cooling | Jan 28, 2011 | Abandoned |
Array
(
[id] => 5954547
[patent_doc_number] => 20110180229
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2011-07-28
[patent_title] => 'Crucible For Use In A Directional Solidification Furnace'
[patent_app_type] => utility
[patent_app_number] => 13/014932
[patent_app_country] => US
[patent_app_date] => 2011-01-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 4520
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] => publications/A1/0180/20110180229.pdf
[firstpage_image] =>[orig_patent_app_number] => 13014932
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/014932 | Crucible For Use In A Directional Solidification Furnace | Jan 26, 2011 | Abandoned |
Array
(
[id] => 6111748
[patent_doc_number] => 20110189842
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2011-08-04
[patent_title] => 'Method For Producing A Semiconductor Wafer Composed Of Silicon With An Epitaxially Deposited Layer'
[patent_app_type] => utility
[patent_app_number] => 13/014796
[patent_app_country] => US
[patent_app_date] => 2011-01-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 4
[patent_no_of_words] => 3139
[patent_no_of_claims] => 6
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] => publications/A1/0189/20110189842.pdf
[firstpage_image] =>[orig_patent_app_number] => 13014796
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/014796 | Method for producing a semiconductor wafer composed of silicon with an epitaxially deposited layer | Jan 26, 2011 | Issued |
Array
(
[id] => 9482292
[patent_doc_number] => 08728236
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2014-05-20
[patent_title] => 'Low dislocation density III-V nitride substrate including filled pits and process for making the same'
[patent_app_type] => utility
[patent_app_number] => 13/008008
[patent_app_country] => US
[patent_app_date] => 2011-01-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 13
[patent_figures_cnt] => 14
[patent_no_of_words] => 11380
[patent_no_of_claims] => 34
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 134
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13008008
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/008008 | Low dislocation density III-V nitride substrate including filled pits and process for making the same | Jan 16, 2011 | Issued |
Array
(
[id] => 9103566
[patent_doc_number] => 20130276697
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2013-10-24
[patent_title] => 'METHOD AND APPARATUS FOR FABRICATING FREESTANDING GaN SUBSTRATE'
[patent_app_type] => utility
[patent_app_number] => 13/996221
[patent_app_country] => US
[patent_app_date] => 2011-01-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 3
[patent_figures_cnt] => 3
[patent_no_of_words] => 5500
[patent_no_of_claims] => 9
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13996221
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/996221 | METHOD AND APPARATUS FOR FABRICATING FREESTANDING GaN SUBSTRATE | Jan 6, 2011 | Abandoned |
Array
(
[id] => 5978515
[patent_doc_number] => 20110094668
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2011-04-28
[patent_title] => 'SUBSTRATE WITH DETERMINATE THERMAL EXPANSION COEFFICIENT'
[patent_app_type] => utility
[patent_app_number] => 12/983543
[patent_app_country] => US
[patent_app_date] => 2011-01-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 4
[patent_no_of_words] => 6378
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] => publications/A1/0094/20110094668.pdf
[firstpage_image] =>[orig_patent_app_number] => 12983543
[rel_patent_id] =>[rel_patent_doc_number] =>) 12/983543 | SUBSTRATE WITH DETERMINATE THERMAL EXPANSION COEFFICIENT | Jan 2, 2011 | Abandoned |
Array
(
[id] => 8498623
[patent_doc_number] => 20120298031
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2012-11-29
[patent_title] => 'DEVICE FOR SINGLE-CRYSTAL GROWTH AND METHOD OF SINGLE-CRYSTAL GROWTH'
[patent_app_type] => utility
[patent_app_number] => 13/521524
[patent_app_country] => US
[patent_app_date] => 2010-12-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 14
[patent_figures_cnt] => 14
[patent_no_of_words] => 9199
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13521524
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/521524 | DEVICE FOR SINGLE-CRYSTAL GROWTH AND METHOD OF SINGLE-CRYSTAL GROWTH | Dec 27, 2010 | Abandoned |
Array
(
[id] => 9988911
[patent_doc_number] => 09034104
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2015-05-19
[patent_title] => 'Method for manufacturing a semiconductor device comprising single- and multi-component oxide semiconductor layers'
[patent_app_type] => utility
[patent_app_number] => 12/968367
[patent_app_country] => US
[patent_app_date] => 2010-12-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 24
[patent_figures_cnt] => 58
[patent_no_of_words] => 24731
[patent_no_of_claims] => 46
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 114
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 12968367
[rel_patent_id] =>[rel_patent_doc_number] =>) 12/968367 | Method for manufacturing a semiconductor device comprising single- and multi-component oxide semiconductor layers | Dec 14, 2010 | Issued |
Array
(
[id] => 9970476
[patent_doc_number] => 09017478
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2015-04-28
[patent_title] => 'Apparatus and method for extracting a silicon ingot made by an electromagnetic continuous casting method'
[patent_app_type] => utility
[patent_app_number] => 13/510895
[patent_app_country] => US
[patent_app_date] => 2010-12-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 10
[patent_no_of_words] => 3241
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 106
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13510895
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/510895 | Apparatus and method for extracting a silicon ingot made by an electromagnetic continuous casting method | Dec 13, 2010 | Issued |
Array
(
[id] => 7656914
[patent_doc_number] => 20110306183
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2011-12-15
[patent_title] => 'APPARATUS AND METHOD FOR MANUFACTURING POLYCRYSTALLINE SILICON THIN FILM'
[patent_app_type] => utility
[patent_app_number] => 12/962990
[patent_app_country] => US
[patent_app_date] => 2010-12-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 5
[patent_no_of_words] => 2671
[patent_no_of_claims] => 17
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] => publications/A1/0306/20110306183.pdf
[firstpage_image] =>[orig_patent_app_number] => 12962990
[rel_patent_id] =>[rel_patent_doc_number] =>) 12/962990 | Method for manufacturing a polycrystalline silicon thin film by joule-heating induced crystallization | Dec 7, 2010 | Issued |
Array
(
[id] => 6150853
[patent_doc_number] => 20110155051
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2011-06-30
[patent_title] => 'MANUFACTURING APPARATUS AND MANUFACTURING METHOD OF SILICON CARBIDE SINGLE CRYSTAL'
[patent_app_type] => utility
[patent_app_number] => 12/956327
[patent_app_country] => US
[patent_app_date] => 2010-11-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 7
[patent_no_of_words] => 6513
[patent_no_of_claims] => 12
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] => publications/A1/0155/20110155051.pdf
[firstpage_image] =>[orig_patent_app_number] => 12956327
[rel_patent_id] =>[rel_patent_doc_number] =>) 12/956327 | MANUFACTURING APPARATUS AND MANUFACTURING METHOD OF SILICON CARBIDE SINGLE CRYSTAL | Nov 29, 2010 | Abandoned |
Array
(
[id] => 9374992
[patent_doc_number] => 08679248
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2014-03-25
[patent_title] => 'GaN whiskers and methods of growing them from solution'
[patent_app_type] => utility
[patent_app_number] => 12/952225
[patent_app_country] => US
[patent_app_date] => 2010-11-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 10
[patent_no_of_words] => 4741
[patent_no_of_claims] => 9
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 302
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 12952225
[rel_patent_id] =>[rel_patent_doc_number] =>) 12/952225 | GaN whiskers and methods of growing them from solution | Nov 22, 2010 | Issued |
Array
(
[id] => 8193117
[patent_doc_number] => 20120119407
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2012-05-17
[patent_title] => 'APPARATUS AND METHOD FOR DIRECTIONAL SOLIDIFICATION OF SILICON'
[patent_app_type] => utility
[patent_app_number] => 12/947936
[patent_app_country] => US
[patent_app_date] => 2010-11-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 7
[patent_no_of_words] => 15045
[patent_no_of_claims] => 22
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] => publications/A1/0119/20120119407.pdf
[firstpage_image] =>[orig_patent_app_number] => 12947936
[rel_patent_id] =>[rel_patent_doc_number] =>) 12/947936 | Apparatus for directional solidification of silicon including a refractory material | Nov 16, 2010 | Issued |
Array
(
[id] => 6001322
[patent_doc_number] => 20110117376
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2011-05-19
[patent_title] => 'Method of Gallium Nitride growth over metallic substrate using Vapor Phase Epitaxy'
[patent_app_type] => utility
[patent_app_number] => 12/947409
[patent_app_country] => US
[patent_app_date] => 2010-11-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 5
[patent_no_of_words] => 2067
[patent_no_of_claims] => 11
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] => publications/A1/0117/20110117376.pdf
[firstpage_image] =>[orig_patent_app_number] => 12947409
[rel_patent_id] =>[rel_patent_doc_number] =>) 12/947409 | Method of Gallium Nitride growth over metallic substrate using Vapor Phase Epitaxy | Nov 15, 2010 | Abandoned |
Array
(
[id] => 11415472
[patent_doc_number] => 09562289
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2017-02-07
[patent_title] => 'Carbon electrode with slidable contact surfaces and apparatus for manufacturing polycrystalline silicon rod'
[patent_app_type] => utility
[patent_app_number] => 13/508826
[patent_app_country] => US
[patent_app_date] => 2010-10-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 4
[patent_no_of_words] => 4111
[patent_no_of_claims] => 6
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 181
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13508826
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/508826 | Carbon electrode with slidable contact surfaces and apparatus for manufacturing polycrystalline silicon rod | Oct 21, 2010 | Issued |
Array
(
[id] => 5954224
[patent_doc_number] => 20110179992
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2011-07-28
[patent_title] => 'CRYSTAL GROWTH METHODS AND SYSTEMS'
[patent_app_type] => utility
[patent_app_number] => 12/909471
[patent_app_country] => US
[patent_app_date] => 2010-10-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 18
[patent_figures_cnt] => 18
[patent_no_of_words] => 13739
[patent_no_of_claims] => 50
[patent_no_of_ind_claims] => 6
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] => publications/A1/0179/20110179992.pdf
[firstpage_image] =>[orig_patent_app_number] => 12909471
[rel_patent_id] =>[rel_patent_doc_number] =>) 12/909471 | CRYSTAL GROWTH METHODS AND SYSTEMS | Oct 20, 2010 | Abandoned |
Array
(
[id] => 10567703
[patent_doc_number] => 09290861
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2016-03-22
[patent_title] => 'Group 13 nitride crystal with stepped surface'
[patent_app_type] => utility
[patent_app_number] => 13/496982
[patent_app_country] => US
[patent_app_date] => 2010-10-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 26
[patent_figures_cnt] => 26
[patent_no_of_words] => 8969
[patent_no_of_claims] => 4
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 142
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13496982
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/496982 | Group 13 nitride crystal with stepped surface | Oct 14, 2010 | Issued |
Array
(
[id] => 12946444
[patent_doc_number] => 09834860
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2017-12-05
[patent_title] => Method of high growth rate deposition for group III/V materials
[patent_app_type] => utility
[patent_app_number] => 12/904090
[patent_app_country] => US
[patent_app_date] => 2010-10-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 1
[patent_figures_cnt] => 1
[patent_no_of_words] => 4607
[patent_no_of_claims] => 15
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 275
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 12904090
[rel_patent_id] =>[rel_patent_doc_number] =>) 12/904090 | Method of high growth rate deposition for group III/V materials | Oct 12, 2010 | Issued |
Array
(
[id] => 6126084
[patent_doc_number] => 20110086213
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2011-04-14
[patent_title] => 'METHOD OF PRODUCING A SILICON CARBIDE BULK SINGLE CRYSTAL WITH THERMAL TREATMENT, AND LOW-IMPEDANCE MONOCRYSTALLINE SILICON CARBIDE SUBSTRATE'
[patent_app_type] => utility
[patent_app_number] => 12/902704
[patent_app_country] => US
[patent_app_date] => 2010-10-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 3
[patent_figures_cnt] => 3
[patent_no_of_words] => 5106
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] => publications/A1/0086/20110086213.pdf
[firstpage_image] =>[orig_patent_app_number] => 12902704
[rel_patent_id] =>[rel_patent_doc_number] =>) 12/902704 | METHOD OF PRODUCING A SILICON CARBIDE BULK SINGLE CRYSTAL WITH THERMAL TREATMENT, AND LOW-IMPEDANCE MONOCRYSTALLINE SILICON CARBIDE SUBSTRATE | Oct 11, 2010 | Abandoned |