
Young J. Kim
Examiner (ID: 11347)
| Most Active Art Unit | 1637 |
| Art Unit(s) | 1631, 1643, 1637, 1681 |
| Total Applications | 1898 |
| Issued Applications | 946 |
| Pending Applications | 328 |
| Abandoned Applications | 671 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 15282139
[patent_doc_number] => 10513727
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2019-12-24
[patent_title] => Multiplex pyrophosphorolysis activated polymerization to amplify multiple almost-sequence-identical templates in a single reaction
[patent_app_type] => utility
[patent_app_number] => 15/462342
[patent_app_country] => US
[patent_app_date] => 2017-03-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 6
[patent_figures_cnt] => 6
[patent_no_of_words] => 7823
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 268
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15462342
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/462342 | Multiplex pyrophosphorolysis activated polymerization to amplify multiple almost-sequence-identical templates in a single reaction | Mar 16, 2017 | Issued |
Array
(
[id] => 12980797
[patent_doc_number] => 20170342476
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-11-30
[patent_title] => Hybrid Multi-Step Nucleic Acid Amplification
[patent_app_type] => utility
[patent_app_number] => 15/458528
[patent_app_country] => US
[patent_app_date] => 2017-03-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 20787
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 68
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15458528
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/458528 | Hybrid Multi-Step Nucleic Acid Amplification | Mar 13, 2017 | Abandoned |
Array
(
[id] => 15915919
[patent_doc_number] => 10655190
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-05-19
[patent_title] => Compositions and methods for detection of Zika virus
[patent_app_type] => utility
[patent_app_number] => 15/456071
[patent_app_country] => US
[patent_app_date] => 2017-03-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 4
[patent_no_of_words] => 10553
[patent_no_of_claims] => 9
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 153
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15456071
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/456071 | Compositions and methods for detection of Zika virus | Mar 9, 2017 | Issued |
Array
(
[id] => 13619655
[patent_doc_number] => 20180361379
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-20
[patent_title] => LIGHT-MEDIATED POLYMERASE CHAIN REACTION AMPLIFICATION AND PRODUCT DETECTION SYSTEM AND METHODS OF USE
[patent_app_type] => utility
[patent_app_number] => 16/061590
[patent_app_country] => US
[patent_app_date] => 2017-03-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 27217
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -25
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16061590
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/061590 | Light-mediated polymerase chain reaction amplification and product detection system and methods of use | Mar 7, 2017 | Issued |
Array
(
[id] => 11971511
[patent_doc_number] => 20170275665
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-09-28
[patent_title] => 'DIRECT CRISPR SPACER ACQUISITION FROM RNA BY A REVERSE-TRANSCRIPTASE-CAS1 FUSION PROTEIN'
[patent_app_type] => utility
[patent_app_number] => 15/440315
[patent_app_country] => US
[patent_app_date] => 2017-02-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 16
[patent_figures_cnt] => 16
[patent_no_of_words] => 19222
[patent_no_of_claims] => 23
[patent_no_of_ind_claims] => 6
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15440315
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/440315 | DIRECT CRISPR SPACER ACQUISITION FROM RNA BY A REVERSE-TRANSCRIPTASE-CAS1 FUSION PROTEIN | Feb 22, 2017 | Abandoned |
Array
(
[id] => 11936736
[patent_doc_number] => 20170240886
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-08-24
[patent_title] => 'Microarray Synthesis and Assembly of Gene-Length Polynucleotides'
[patent_app_type] => utility
[patent_app_number] => 15/440293
[patent_app_country] => US
[patent_app_date] => 2017-02-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 15
[patent_figures_cnt] => 15
[patent_no_of_words] => 8005
[patent_no_of_claims] => 25
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15440293
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/440293 | Microarray synthesis and assembly of gene-length polynucleotides | Feb 22, 2017 | Issued |
Array
(
[id] => 11670391
[patent_doc_number] => 20170159110
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-06-08
[patent_title] => 'SEQUENCES AND THEIR USE FOR THE DETECTION AND CHARACTERIZATION OF E. COLI O157:H7'
[patent_app_type] => utility
[patent_app_number] => 15/433243
[patent_app_country] => US
[patent_app_date] => 2017-02-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 20358
[patent_no_of_claims] => 4
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15433243
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/433243 | SEQUENCES AND THEIR USE FOR THE DETECTION AND CHARACTERIZATION OF E. COLI O157:H7 | Feb 14, 2017 | Abandoned |
Array
(
[id] => 11866509
[patent_doc_number] => 20170233795
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-08-17
[patent_title] => 'NUCLEIC ACID AMPLIFICATION REAGENT, NUCLEIC ACID AMPLIFICATION CARTRIDGE, AND NUCLEIC ACID AMPLIFICATION METHOD'
[patent_app_type] => utility
[patent_app_number] => 15/428476
[patent_app_country] => US
[patent_app_date] => 2017-02-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 8787
[patent_no_of_claims] => 4
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15428476
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/428476 | NUCLEIC ACID AMPLIFICATION REAGENT, NUCLEIC ACID AMPLIFICATION CARTRIDGE, AND NUCLEIC ACID AMPLIFICATION METHOD | Feb 8, 2017 | Abandoned |
Array
(
[id] => 15978563
[patent_doc_number] => 10669591
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-06-02
[patent_title] => Selective detection of
[patent_app_type] => utility
[patent_app_number] => 15/420819
[patent_app_country] => US
[patent_app_date] => 2017-01-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 1
[patent_figures_cnt] => 1
[patent_no_of_words] => 12042
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 102
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15420819
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/420819 | Selective detection of | Jan 30, 2017 | Issued |
Array
(
[id] => 16043389
[patent_doc_number] => 10683558
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-06-16
[patent_title] => Selective detection of
[patent_app_type] => utility
[patent_app_number] => 15/420836
[patent_app_country] => US
[patent_app_date] => 2017-01-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 1
[patent_figures_cnt] => 1
[patent_no_of_words] => 12043
[patent_no_of_claims] => 17
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 107
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15420836
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/420836 | Selective detection of | Jan 30, 2017 | Issued |
Array
(
[id] => 12206115
[patent_doc_number] => 20180051341
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-02-22
[patent_title] => 'Method for Reducing Sequencing Errors Caused by DNA Fragmentation'
[patent_app_type] => utility
[patent_app_number] => 15/414260
[patent_app_country] => US
[patent_app_date] => 2017-01-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 17
[patent_figures_cnt] => 17
[patent_no_of_words] => 10398
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15414260
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/414260 | Method for Reducing Sequencing Errors Caused by DNA Fragmentation | Jan 23, 2017 | Abandoned |
Array
(
[id] => 11692262
[patent_doc_number] => 20170167978
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-06-15
[patent_title] => 'METHODS FOR HIGH-THROUGHPUT FLUORESCENCE IMAGING WITH SAMPLE HEATING CAPABILITY'
[patent_app_type] => utility
[patent_app_number] => 15/413045
[patent_app_country] => US
[patent_app_date] => 2017-01-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 13
[patent_figures_cnt] => 13
[patent_no_of_words] => 9030
[patent_no_of_claims] => 11
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15413045
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/413045 | Methods for high-throughput fluorescence imaging with sample heating capability | Jan 22, 2017 | Issued |
Array
(
[id] => 11649621
[patent_doc_number] => 20170145522
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-05-25
[patent_title] => 'DETECTION OF WEST NILE VIRUS NUCLEIC ACIDS IN THE VIRAL 3\' NON-CODING REGION'
[patent_app_type] => utility
[patent_app_number] => 15/411448
[patent_app_country] => US
[patent_app_date] => 2017-01-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 3
[patent_figures_cnt] => 3
[patent_no_of_words] => 28167
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15411448
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/411448 | Detection of West Nile virus nucleic acids in the viral 3' non-coding region | Jan 19, 2017 | Issued |
Array
(
[id] => 13778839
[patent_doc_number] => 20190002958
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-01-03
[patent_title] => MODULATION OF ACCESSIBILITY OF HOST NUCLEIC ACIDS TO NUCLEIC ACID DIGESTING ENZYMES IN ACELLULAR BIOLOGICAL FLUIDS
[patent_app_type] => utility
[patent_app_number] => 16/068457
[patent_app_country] => US
[patent_app_date] => 2017-01-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 16828
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -12
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16068457
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/068457 | Modulation of accessibility of host nucleic acids to nucleic acid digesting enzymes in acellular biological fluids | Jan 5, 2017 | Issued |
Array
(
[id] => 11691268
[patent_doc_number] => 20170166984
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-06-15
[patent_title] => 'CORN PLANT MON88017 AND COMPOSITIONS AND METHODS FOR DETECTION THEREOF'
[patent_app_type] => utility
[patent_app_number] => 15/392953
[patent_app_country] => US
[patent_app_date] => 2016-12-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 10
[patent_figures_cnt] => 10
[patent_no_of_words] => 11915
[patent_no_of_claims] => 4
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15392953
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/392953 | Corn plant MON88017 and compositions and methods for detection thereof | Dec 27, 2016 | Issued |
Array
(
[id] => 11590009
[patent_doc_number] => 20170114421
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-04-27
[patent_title] => 'Methods for Detection and Typing of Nucleic Acids'
[patent_app_type] => utility
[patent_app_number] => 15/386298
[patent_app_country] => US
[patent_app_date] => 2016-12-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 21199
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15386298
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/386298 | Methods for detection and typing of nucleic acids | Dec 20, 2016 | Issued |
Array
(
[id] => 17135074
[patent_doc_number] => 11136620
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-10-05
[patent_title] => Detection device having capture region and detection region
[patent_app_type] => utility
[patent_app_number] => 16/061129
[patent_app_country] => US
[patent_app_date] => 2016-12-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 39
[patent_figures_cnt] => 53
[patent_no_of_words] => 23662
[patent_no_of_claims] => 24
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 103
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16061129
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/061129 | Detection device having capture region and detection region | Dec 11, 2016 | Issued |
Array
(
[id] => 15309599
[patent_doc_number] => 10519491
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2019-12-31
[patent_title] => Fast PCR for STR genotyping
[patent_app_type] => utility
[patent_app_number] => 15/367241
[patent_app_country] => US
[patent_app_date] => 2016-12-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 5
[patent_no_of_words] => 7960
[patent_no_of_claims] => 4
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 83
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15367241
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/367241 | Fast PCR for STR genotyping | Dec 1, 2016 | Issued |
Array
(
[id] => 11649598
[patent_doc_number] => 20170145499
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-05-25
[patent_title] => 'METHODS FOR INDEXING SAMPLES AND SEQUENCING MULTIPLE POLYNUCLEOTIDE TEMPLATES'
[patent_app_type] => utility
[patent_app_number] => 15/365266
[patent_app_country] => US
[patent_app_date] => 2016-11-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 11
[patent_no_of_words] => 22059
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15365266
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/365266 | Methods for indexing samples and sequencing multiple polynucleotide templates | Nov 29, 2016 | Issued |
Array
(
[id] => 14852775
[patent_doc_number] => 10415103
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2019-09-17
[patent_title] => GeXP rapid detection primer set for simultaneously identifying gene HA of eight different human-infected subtypes of avian influenza virus, kit and use thereof
[patent_app_type] => utility
[patent_app_number] => 15/361964
[patent_app_country] => US
[patent_app_date] => 2016-11-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 2
[patent_figures_cnt] => 4
[patent_no_of_words] => 3981
[patent_no_of_claims] => 3
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 66
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15361964
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/361964 | GeXP rapid detection primer set for simultaneously identifying gene HA of eight different human-infected subtypes of avian influenza virus, kit and use thereof | Nov 27, 2016 | Issued |