Log-likelihood ratio (LLR) dampening in low-density parity-check (LDPC) decoders | Patent Number 09337865
US 09337865 B2Abdel-Hakim S. Alhussien
Earl T. Cohen
Described embodiments provide a media controller to read data stored in a media. The media controller determines a value for each bit of a shortened codeword from the media. The shortened codeword includes a plurality of non-shortened bits of a full codeword, where the full codeword includes the plurality of non-shortened bits and one or more shortened bits. Shortened bits correspond to bits unused in the shortened codeword. The media controller converts the determined values for each bit of the shortened codeword into a first set of log-likelihood ratio (LLR) values. The full codeword is decoded using the first set of LLR values for the shortened codeword. The media controller dampens one or more LLR values corresponding to non-shortened bits of the codeword to produce a second set of LLR values and decodes the second set of LLR values.
- 1. A method of reading, by a controller, data from at least one of a storage media and a communication channel, the method comprising:ndetermining a value for each bit of a shortened codeword of the read data, wherein the shortened codeword comprises a plurality of non-shortened bits of a full codeword, the full codeword comprising the plurality of non-shortened bits and one or more shortened bits, the shortened bits corresponding to bits unused in the shortened codeword;converting the determined values for each bit of the shortened codeword into a first set of log-likelihood ratio (LLR) values;decoding the full codeword using the first set of LLR values for the shortened codeword;dampening one or more LLR values of the first set of LLR values, the one or more LLR values corresponding to non-shortened bits of the codeword to produce a second set of LLR values, wherein the dampening comprises:nsetting one or more LLR values corresponding to shortened bits of the shortened codeword to an associated maximum LLR magnitude; anddecoding the second set of LLR values,wherein the step of dampening one or more LLR values is performed only if the decoding of the first set of LLR values did not successfully recover data corresponding to the shortened codeword.
- 16. A non-transitory machine-readable storage medium, having encoded thereon program code, wherein, when the program code is executed by a machine, the machine implements a method of reading, by a controller, data from at least one of a storage media and a communication channel, the method comprising:ndetermining a value for each bit of a shortened codeword of the read data, wherein the shortened codeword comprises a plurality of non-shortened bits of a full codeword, the full codeword comprising the plurality of non-shortened bits and one or more shortened bits, the shortened bits corresponding to bits unused in the shortened codeword;converting the determined values for each bit of the shortened codeword into a first set of log-likelihood ratio (LLR) values;decoding the full codeword using the first set of LLR values for the shortened codeword;dampening one or more LLR values of the first set of LLR values, the one or more LLR values corresponding to non-shortened bits of the codeword to produce a second set of LLR values, wherein the dampening comprises:nsetting one or more LLR values corresponding to shortened bits of the shortened codeword to an associated maximum LLR magnitude; anddecoding the second set of LLR values,wherein the step of dampening one or more LLR values is performed only if the decoding of the first set of LLR values did not successfully recover data corresponding to the shortened codeword.
- 17. A controller coupled to a host device and at least one of a storage media and a communication channel, the controller comprising:na buffer configured to store data read from the at least one of a storage media and a communication channel;a low density parity check decoder configured to:ndetermine a value for each bit of a shortened codeword of the read data, wherein the shortened codeword comprises a plurality of non-shortened bits of a full codeword, the full codeword comprising the plurality of non-shortened bits and one or more shortened bits, the shortened bits corresponding to bits unused in the shortened codeword;convert the determined values for each bit of the shortened codeword into a first set of log-likelihood ratio (LLR) values;decode the full codeword using the first set of LLR values for the shortened codeword;dampen one or more LLR values of the first set of LLR values, the one or more LLR values corresponding to non-shortened bits of the codeword to produce a second set of LLR values, wherein the decoder is configured to dampen by:nsetting one or more LLR values corresponding to shortened bits of the shortened codeword to an associated maximum LLR magnitude; anddecode the second set of LLR values,wherein the step of dampening one or more LLR values is performed only if the decoding of the first set of LLR values did not successfully recover data corresponding to the shortened codeword.
This application claims the benefit of the filing date of U.S. provisional patent application No. 61/729,178 filed Nov. 21, 2012, the teachings of which are incorporated herein in their entireties by reference.
The subject matter of this application is related to U.S. patent application Ser. No. 13/464,433 filed May 4, 2012 and Ser. No. 13/567,025 filed Aug. 4, 2012, the teachings of which are incorporated herein in their entireties by reference.
Flash memory is a non-volatile memory (NVM) that is a specific type of electrically erasable programmable read-only memory (EEPROM). One commonly employed type of flash memory technology is NAND flash memory. NAND flash memory requires small chip area per cell and is typically divided into one or more banks or planes. Each bank is divided into blocks; each block is divided into pages. Each page includes a number of bytes for storing user data, error correction code (ECC) information, or both.
There are three basic operations for NAND devices: read, write and erase. The read and write operations are performed on a page-by-page basis. Page sizes are generally 2N bytes of user data (plus additional bytes for ECC information), where N is an integer, with typical user data page sizes of, for example, 2,048 bytes (2 KB), 4,096 bytes (4 KB), 8,192 bytes (8 KB) or more per page. A “read unit†is the smallest amount of data and corresponding ECC information that can be read from the NVM and corrected by the ECC, and might typically be between 4K bits and 32K bits (e.g., there is generally an integer number of read units per page). Pages are typically arranged in blocks, and an erase operation is performed on a block-by-block basis. Typical block sizes are, for example, 64, 128 or more pages per block. Pages must be written sequentially, usually from a low address to a high address within a block. Lower addresses cannot be rewritten until the block is erased. Associated with each page is a spare area (typically 100-640 bytes) generally used for storage of ECC information and/or other metadata used for memory management. The ECC information is generally employed to detect and correct errors in the user data stored in the page, and the metadata might be used for mapping logical addresses to and from physical addresses. In NAND flash chips with multiple banks, multi-bank operations might be supported that allow pages from each bank to be accessed substantially in parallel.
NAND flash memory stores information in an array of memory cells made from floating gate transistors. These transistors hold their voltage level, also referred to as charge, for long periods of time, on the order of months or years, without external power being supplied. In single-level cell (SLC) flash memory, each cell stores one bit of information. In multi-level cell (MLC) flash memory, each cell can store more than one bit per cell by choosing between multiple levels of electrical charge to apply to the floating gates of its cells. MLC NAND flash memory employs multiple voltage levels per cell with a serially linked transistor arrangement to allow more bits to be stored using the same number of transistors. Thus, considered individually, each cell has a particular stored (programmed) charge that corresponds to the logical bit value(s) being stored in the cell, and the cells are read based on one or more threshold voltages for each cell.
While, ideally, all cells in the NVM would have the same threshold voltages, in practice the threshold voltages differ across the cells in “threshold voltage distributions†that are similar in shape to a Gaussian probability curve. Considered across a large number of cells (e.g., a read unit or a page), there are as many threshold voltage distributions (e.g., Gaussian probability curves) as there are states per cell (e.g., 2b distributions per cell, where b is the number of bits). Thus, for SLC flash memories, there are two states (0 or 1) and thus two threshold voltage distributions (one for zeroes and another for ones) per cell, and a single read threshold voltage. Most MLC NAND flash memories employs four possible states per cell, and can thus store two bits of information per cell. Thus, for MLC flash memories, there are four states (e.g., 00, 01, 10, 11) and thus four threshold voltage distributions and three read thresholds.
Increasing the number of bits per cell causes cell-to-cell interference and retention noise (e.g., a drift in the stored charge, such as due to leakage) to become more severe, which reduces the amount of voltage margin separating each voltage level and increases the likelihood of read errors and, thus, the bit error ratio (BER) of the system. Further, the threshold voltage distributions of each cell can change over operating time of the NVM, for example due to read disturb, write disturb, retention loss, cell aging and process, voltage and temperature (PVT) variations, also increasing the BER. When a bit error is encountered in a read unit read from NVM, the system (e.g., a controller coupled to the NVM) might re-read the read unit at different voltage values of the read threshold to attempt to locate a sample of the read unit that is hard-decoding correctable. Further, software complexity might be increased to compensate for a larger BER, for example by employing an error correction code (ECC) such as Bose-Chaudhuri-Hocquenghem (BCH) and Low-Density Parity-Check (LDPC).
As memory devices become smaller and the number of levels per cell increases, more powerful ECC is required. For example, ECC is improved by decreasing the code rate for BCH codes, however, decreasing the code rate reduces the storage capacity of the NVM. Unlike BCH codes, LDPC codes allow soft-decision decoding, where in addition to estimating each bit value (“hard decoding†), the decoder also estimates each bit's reliability (“soft-decision decoding†) For LDPC codes to outperform BCH codes, improved estimation of each bit's reliability is desired.
This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter.
Described embodiments provide a media controller to read data stored in a media. The media controller determines a value for each bit of a shortened codeword from the media. The shortened codeword includes a plurality of non-shortened bits of a full codeword, where the full codeword includes the plurality of non-shortened bits and one or more shortened bits. Shortened bits correspond to bits unused in the shortened codeword. The media controller converts the determined values for each bit of the shortened codeword into a first set of log-likelihood ratio (LLR) values. The full codeword is decoded using the first set of LLR values for the shortened codeword. The media controller dampens one or more LLR values corresponding to non-shortened bits of the codeword to produce a second set of LLR values and decodes the second set of LLR values.
Other aspects, features, and advantages of described embodiments will become more fully apparent from the following detailed description, the appended claims, and the accompanying drawings in which like reference numerals identify similar or identical elements.
Described embodiments provide a media controller to read data stored in a media. The media controller determines a value for each bit of a shortened codeword from the media. The shortened codeword includes a plurality of non-shortened bits of a full codeword, where the full codeword includes the plurality of non-shortened bits and one or more shortened bits. Shortened bits correspond to bits unused in the shortened codeword. The media controller converts the determined values for each bit of the shortened codeword into a first set of log-likelihood ratio (LLR) values. The full codeword is decoded using the first set of LLR values for the shortened codeword. The media controller dampens one or more LLR values corresponding to non-shortened bits of the codeword to produce a second set of LLR values and decodes the second set of LLR values.
Table 1 defines a list of acronyms employed throughout this specification as an aid to understanding the described embodiments:
As shown in
Control processor 140 communicates with solid state controller 130 to control data access (e.g., read or write operations) data in media 110. Control processor 140 might be implemented as one or more Pentium®, Power PC®, Tensilica® or ARM processors, or a combination of different processor types (Pentium® is a registered trademark of Intel Corporation, Tensilica® is a trademark of Tensilica, Inc., ARM processors are by ARM Holdings, plc, and Power PC® is a registered trademark of IBM). Although shown in
Communication link 170 is used to communicate with host device 180, which might be a computer system that interfaces with NVM system 100. Communication link 170 might be a custom communication link, or might be a bus that operates in accordance with a standard communication protocol such as, for example, a Small Computer System Interface (“SCSI†) protocol bus, a Serial Attached SCSI (“SAS†) protocol bus, a Serial Advanced Technology Attachment (“SATA†) protocol bus, a Universal Serial Bus (“USB†), a Universal Flash Storage (“UFS†) protocol interface, an Ethernet link, an IEEE 802.11 link, an IEEE 802.15 link, an IEEE 802.16 link, a Peripheral Component Interconnect Express (“PCI-E†) link, a Serial Rapid I/O (“SRIO†) link, or any other similar interface link for connecting a peripheral device to a computer.
As described herein, in both SLC and MLC NAND flash, each cell has a voltage charge level (e.g., an analog signal) that can be sensed, such as by comparison with a read threshold voltage level. A media controller might have a given number of predetermined voltage thresholds employed to read the voltage charge level and detect a corresponding binary value of the cell. For example, for MLC NAND flash, if there are 3 thresholds (0.1, 0.2, 0.3), when a cell voltage level is 0.0≦cell voltage<0.1, the cell might be detected as having a value of [00]. When reading a typical MLC flash, three read thresholds are originally set to default values programmed by the flash manufacturer. If ECC is unsuccessful, the three thresholds are modified to re-read the data. If the cell voltage level is 0.1≦cell voltage<0.2, the value might be [10], and so on. Thus, a measured cell level might typically be compared to the thresholds one by one, until the cell level is determined to be in between two thresholds and can be detected. Thus, detected data values are provided to a decoder of memory controller 120 to decode the detected values (e.g., with an error-correction code) into data to be provided to host device 180.
Described embodiments employ Low-Density Parity-Check (LDPC) decoders to decode data stored in the flash memory (e.g., LDPC codec 142 of
For example,
In some embodiments, various scrambling techniques are used such that the statistical distribution of the four states is 25 percent for each state. When the MLC cell having shifted distributions (e.g., such as shown in
Thus, as can be seen in
In many practical cases, codewords are shortened. Shortening means that there are codeword positions, such as some message bit positions, that are unused and are effectively known when both encoding and decoding without being stored/transmitted. Shortened codewords might be employed to support variable sizes of codewords and provide greater flexibility in code rate selection. For example, if the number of check bytes is fixed but different NAND flash vendors provide differing amounts of spare area, then the number of user bytes per codeword can be changed by shortening the codeword to accommodate the differing amounts of spare area.
For example, a first NAND flash vendor might employ a spare area of 1216 bytes per 16 KB page of user data, and a second NAND flash vendor might employ a spare area of 1280 bytes per 16 KB page of user data. In an exemplary embodiment having 144 bytes of LDPC check bits per 2 KB codeword, the first vendor's NAND flash could employ eight instances of a (2200B, 2056B) code, and the second vendor's NAND flash could employ eight instances of a (2208B, 2064B) code, efficiently using all the bytes in each page for each vendor's memory. Depending on the implementation, the LDPC encoder and decoder (e.g., LDPC codec 142 of
Certain channels might have errors known as “stuck bit†errors, which are errors that appear strongly to be one value (e.g., 0), but actually should be another value (e.g., 1). Stuck bit errors might be due to one or more of: (1) static stuck bits—such as bits that cannot be written/programmed and always read as a fixed value (e.g., one or more shorted or open transistors in NAND MLC flash memory string 300 of
Since such “stuck bit†errors appear very strongly to have a given value (e.g., a high magnitude LLR), when in actuality the bits should be the opposite value, stuck bit errors thus can create errors in LDPC decoding Such stuck bit errors raise an error floor for LDPC decoding by “lying†strongly about their value, and might exacerbate a “trapping set issue†. A trapping set issue is when the LLR value strongly indicates the bit is a 0, but in reality the bit is a 1, and the other bits in the trapping set are unable in some cases to over-rule the strength of the erroneous bit. Described embodiments selectively modify the LLR in non-shortened bit positions to raise the relative “certainty†of shortened bit positions. This helps LDPC decoding overcome stuck bits and lowers the error floor in the presence of stuck bits.
An LDPC decoder generally treats shortened positions as having the maximum magnitude of LLR. Other (non-shortened) bit positions have an LLR determined from their actual likelihood of having the given value, as determined by analog data obtained from the storage/transmission media (e.g., a measured cell level compared to the various thresholds such as shown in
In some embodiments, the shortened bit positions are always treated as zero on encoding (and similarly on decoding) In other embodiments, the shortened bit positions are always treated as one on encoding (and similarly on decoding). In other embodiments, some or all of the shortened bit positions are treated as having a specified pattern, such as alternating zeroes and ones, on encoding (and similarly on decoding). Thus, according to described embodiments, the LLR for shortened bit positions might be treated as having the maximum LLR magnitude or as having an infinite LLR magnitude, and is prevented from being changed during the decoding process. For example, in some embodiments, the shortened bit positions have a special encoding for “infinite†magnitude, and logic in the LDPC decoder is modified to treat the value “infinity†specially (such as according to its mathematical meaning, or such as being much larger than any other value). Having a special “infinite†LLR magnitude for the shortened bit positions reinforces the “certainty†of those bit positions such that those bit positions are “guaranteed†to be correct, which is not the case for non-shortened bit positions, even non-shortened bit positions with a high-magnitude LLR value, in the presence of stuck bits. In other embodiments, the LLR in shortened bit positions is set to the maximum possible LLR magnitude at the initial LDPC decoding step (e.g., at the start of a first iteration of an iterative LDPC decoding process), and is not allowed to change in subsequent LDPC decoding iterations. Even if the LLR of the shortened bit positions is allowed to change, the LLR in the shortened bit positions is unlikely to change to a wrong value (e.g., a wrong sign) by virtue of their reliable initial magnitudes.
During decoding, the LLR for stuck bits is determined as for any other non-shortened bit, for example by determining an analog level for the bit and determining a probability of the bit being a 0 or a 1. For stuck bits, though, the analog level for the bit is incorrect. The stuck bits thus have a high LLR magnitude, such as a maximum-valued LLR, and potentially raise an error floor, limiting the output bit error rate of the LDPC Decoder. Specifically, the stuck bits prevent the LDPC decoder from converging on a solution by increasing the likelihood of the LDPC decoder getting caught in a trapping set. When this happens, the LDPC decoding fails. LDPC decoding might be repeated multiple times using more and more precise LLR information. For example, if hard-decision LDPC decoding fails, one or more additional reads of the NAND flash memory are done at different threshold voltages to get first-order LLR information, and LDPC decoding is repeated with this soft-decision information. If LDPC decoding fails again, further additional reads of the NAND flash memory are done, such as at intermediate threshold voltages, to get second-order LLR information, and LDPC decoding is repeated with this improved soft-decision information. If LDPC decoding fails again, various embodiments have even further fallback strategies such as DSP techniques, or some type of higher-level code across multiple codewords (e.g., a RAID5-like code).
In the presence of stuck bits, the repeated read retries and LDPC decoding do not improve the LDPC decoding, since the stuck bits do not change and instead maintain the incorrect state. The further fallback strategies tend to be very processing intensive and might still not be able to correct for the stuck bits.
In various embodiments, when a soft-decision LDPC decoding step fails, non-shortened bit positions have their LLR value dampened (decreased in magnitude) while shortened bit positions maintain their (e.g., maximal) LLR value. LDPC decoding is then repeated. Dampening the non-shortened bit positions has the effect of reducing the LLR magnitude of the stuck bits as compared to shortened bit positions, thus giving the LDPC decoder a greater ability to determine which bits have the correct value. After dampening is applied to the non-shortened bit positions, LDPC decoding is tried again with the updated LLR. Dampening might be repeated, for example, if a first, slight dampening does not result in successful LDPC decoding, one or more additional, more aggressive dampening steps can be performed and LDPC decoding retried. Thus, dampening and repeating LDPC decoding is done at one or more stages of the decoding process.
Thus, in described embodiments, dampening and repeating LDPC decoding is attempted every time LDPC decoding (without dampening) fails, such as in parallel with additional reads to get more precise soft-decision information. In some exemplary embodiments, dampening and repeating LDPC decoding is solely done when LDPC decoding after all desired additional reads (to get further soft-decision information) has failed. Dampening and repeating LDPC decoding is not necessarily the final attempt, as DSP might be done either before or after dampening, and use of higher-level coding across multiple codewords (e.g., a RAID5-like code) is generally the last recovery attempt. When stuck bit errors are more prevalent, dampening is done for every LDPC decoding so that only non-shortened bit positions are enabled to have the maximum LLR value. A first attempt at dampening might be performed at a first dampening level, and if LDPC decoding fails, one or more stronger levels of dampening might be applied for further LDPC decoding attempts.
When hard errors are the culprit in getting LDPC decoding stuck in a trapping set, the LDPC decoding generally gets stuck in a single “small†trapping set. The size of the trapping set (a number of participating erroneous bits nodes and unsatisfied check nodes) is determined by the Tanner graph corresponding to the parity check matrix of the LDPC code, specifically the column weight and the graph's short-cycle spectrum. Example small trapping sets include (4,2), and (4,4), which mean 4 erroneous bit nodes and 2 and 4 unsatisfied checks, respectively. When LDPC decoding is stuck in such a small trapping set, this is determinable by a syndrome weight, or equivalently by a number of unsatisfied checks. If after the LDPC decoding reaches the maximum number of allowable iterations, it is found that the syndrome weight is small or has been small (e.g., between 1 and 6) for the last few iterations, then this is likely indicative of hard errors inducing a small trapping set. In response, it is effective to use more aggressive dampening rather than additional read retries, as read retries can not reliably detect hard errors (such as when the written analog voltage is beyond the voltage window bounded by the minimum and maximum read reference voltages).
Dampening is performed by applying a ratio to the LLR of all the non-shortened bit positions. For example, if the LLR ranges from −7 to +7, the non-shortened bit positions are multiplied by a dampening factor, such as 5/7, or 4.5/7, or 4/7. The shortened bit positions maintain their maximal LLR (e.g., +7 or −7).
In some embodiments, dampening is asymmetrical, based on knowledge of the likelihood of certain types of failures. For example, if the value 1 has a positive LLR and the value 0 has a negative LLR, and if stuck bits are more likely to have the value 1 than the value 0, then asymmetrical dampening dampens positive LLR values more strongly the negative LLR values. Further in the example, if it is very unlikely for any stuck bits to have the value 0, then only positive LLR values are dampened.
In embodiments employing MLC NAND flash, knowledge of the value of the other bit stored in a same cells (e.g., the LSB bit value for an MSB bit being decoded, or the MSB bit value for an LSB bit being decoded, etc.) combined with knowledge of the likelihood of how stuck bit failures affect cells, enables selective dampening of each bit position based on knowledge of a value of the other bit stored in the same cell. For example, when decoding a lower page, reading and decoding the upper page provides additional information to selectively dampen LLR values used for the lower-page decoding Thus, LLR values might be produced by converting one or more samples taken by reading a given portion of the NAND flash (such as one or more codewords) at respective threshold voltages. In further embodiments, a table-lookup is used to convert the samples taken at each bit position into an LLR value for that bit position. The table is computed in advance, such as by firmware, based on static or dynamic knowledge of the state distributions of the cells in the portion of the NAND flash being read. In still further embodiments, the samples are ordered by the respective threshold voltage and the conversion is enabled to use an index of a transition point (such as from 1 to 0, or from 0 to 1) to determine the LLR value.
According to various embodiments, LLR values are generated by one or more of: the LDPC decoder; a dedicated hardware unit; firmware; and other similar techniques. According to various embodiments, the LLR dampening is done by one or more of: the LDPC decoder as a pre-processing step; firmware changing LLR values provided in a lookup table; directly modifying LLR values stored in a memory; and other similar techniques.
Exemplary embodiments employ a systematic code where ECC bits are at the end of the message bits (e.g., as shown
Thus, described embodiments provide a media controller to read data stored in a media. The media controller determines a value for each bit of a shortened codeword from the media. The shortened codeword includes a plurality of non-shortened bits of a full codeword, where the full codeword includes the plurality of non-shortened bits and one or more shortened bits. Shortened bits correspond to bits unused in the shortened codeword that are set to a default value. The media controller converts the determined values for each bit of the shortened codeword into a first set of log-likelihood ratio (LLR) values. The full codeword is decoded using the first set of LLR values for the shortened codeword. The media controller dampens one or more LLR values corresponding to non-shortened bits of the codeword to produce a second set of LLR values and decodes the second set of LLR values.
Reference herein to “one embodiment†or “an embodiment†means that a particular feature, structure, or characteristic described in connection with the embodiment can be included in at least one embodiment. The appearances of the phrase “in one embodiment†in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments necessarily mutually exclusive of other embodiments. The same applies to the term “implementation.†As used in this application, the word “exemplary†is used herein to mean serving as an example, instance, or illustration. Any aspect or design described herein as “exemplary†is not necessarily to be construed as preferred or advantageous over other aspects or designs. Rather, use of the word exemplary is intended to present concepts in a concrete fashion.
While the exemplary embodiments have been described with respect to processing blocks in a software program, including possible implementation as a digital signal processor, micro-controller, or general purpose computer, the described embodiments are not so limited. As would be apparent to one skilled in the art, various functions of software might also be implemented as processes of circuits. Such circuits might be employed in, for example, a single integrated circuit, a multi-chip module, a single card, or a multi-card circuit pack.
Additionally, the term “or†is intended to mean an inclusive “or†rather than an exclusive “or†. That is, unless specified otherwise, or clear from context, “X employs A or B†is intended to mean any of the natural inclusive permutations. That is, if X employs A; X employs B; or X employs both A and B, then “X employs A or B†is satisfied under any of the foregoing instances. In addition, the articles “a†and “an†as used in this application and the appended claims should generally be construed to mean “one or more†unless specified otherwise or clear from context to be directed to a singular form.
Moreover, the terms “system,†“component,†“module,†“interface,†, “model†or the like are generally intended to refer to a computer-related entity, either hardware, a combination of hardware and software, software, or software in execution. For example, a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer. By way of illustration, both an application running on a controller and the controller can be a component. One or more components may reside within a process and/or thread of execution and a component may be localized on one computer and/or distributed between two or more computers.
As used herein in reference to an element and a standard, the term “compatible†means that the element communicates with other elements in a manner wholly or partially specified by the standard, and would be recognized by other elements as sufficiently capable of communicating with the other elements in the manner specified by the standard. The compatible element does not need to operate internally in a manner specified by the standard.
Also for purposes of this description, the terms “couple,†“coupling,†“coupled,†“connect,†“connecting,†or “connected†refer to any manner known in the art or later developed in which energy is allowed to be transferred between two or more elements, and the interposition of one or more additional elements is contemplated, although not required. Conversely, the terms “directly coupled,†“directly connected,†etc., imply the absence of such additional elements. Signals and corresponding nodes or ports might be referred to by the same name and are interchangeable for purposes here.
Although the subject matter described herein may be described in the context of illustrative implementations to process one or more computing application features/operations for a computing application having user-interactive components the subject matter is not limited to these particular embodiments. Rather, the techniques described herein can be applied to any suitable type of user-interactive component execution management methods, systems, platforms, and/or apparatus.
Described embodiments might be implemented in the form of methods and apparatuses for practicing those methods. Described embodiments might also be implemented in the form of program code embodied in tangible media, such as magnetic recording media, optical recording media, solid state memory, floppy diskettes, CD-ROMs, hard drives, or any other non-transitory machine-readable storage medium, wherein, when the program code is loaded into and executed by a machine, such as a computer, the machine becomes an apparatus for practicing the described embodiments. Described embodiments might also be implemented in the form of program code, for example, whether stored in a non-transitory machine-readable storage medium, loaded into and/or executed by a machine, or transmitted over some transmission medium or carrier, such as over electrical wiring or cabling, through fiber optics, or via electromagnetic radiation, wherein, when the program code is loaded into and executed by a machine, such as a computer, the machine becomes an apparatus for practicing the described embodiments. When implemented on a general-purpose processor, the program code segments combine with the processor to provide a unique device that operates analogously to specific logic circuits. Described embodiments might also be implemented in the form of a bitstream or other sequence of signal values electrically or optically transmitted through a medium, stored magnetic-field variations in a magnetic recording medium, etc., generated using a method and/or an apparatus such as described herein.
It should be understood that the steps of the exemplary methods set forth herein are not necessarily required to be performed in the order described, and the order of the steps of such methods should be understood to be merely exemplary. Likewise, additional steps might be included in such methods, and certain steps might be omitted or combined, in methods consistent with various embodiments.
It will be further understood that various changes in the details, materials, and arrangements of the parts which have been described and illustrated in order to explain the nature of described embodiments might be made by those skilled in the art without departing from the scope of the following claims.