Method for Testing Paths to Pull-Up and Pull-Down of Input/Output Pads | Patent Publication Number 20140304562
US 20140304562 A1Agere Systems Broadcom
A SCAN chain architecture for each path in a circuit having combinational paths includes a control mechanism to control one or more flip flops and multiplexers to direct operational or test signals. Operational signals are sent along at least one combinational path to a pull-up/pull-down for at least one input/output pad and an operational voltage is recorded. Test signals are sent along at least one alternative path to an alternative input/output and a test voltage is recorded. The operational voltage is compared to the test voltage to identify a combinational path fault.
- 1. A circuit, comprising:na test control logic having at least one input and at least one output;a first flip flop;a first multiplexer; anda first three-state gate,wherein:nan output from the first flip flop is configured as an input to the first multiplexer;a first output of the at least one outputs of the test control logic is configured as an input to the first multiplexer; andthe output of the first multiplexer is a combinational path to a pull-up/pull-down of an input/output pad.
- 11. A computer apparatus, comprising:na processor comprising:na test control logic having at least one input and at least one output;a first flip flop;a first multiplexer; anda first-three-state gate connected to an output of the first multiplexer;a memory connected to the processor; andcomputer executable program code configured to execute on the processor,wherein:nan output from the first flip flop is configured as an input to the first multiplexer;a first output of the at least one outputs of the test control logic is configured as an input to the first multiplexer; andthe output of the first three-state gate is a combinational path to a pull-up/pull-down of an input/output pad.
- 17. A method for testing combinational paths, comprising:nproducing a first voltage;directing the first voltage to a pull-up/pull-down associated with a first input/output pad, through a combinational path;producing a second voltage;directing the second voltage to a second input/output pad; andcomparing the first voltage to the second voltage.
The present application claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Application Ser. No. 61/809,579, filed Apr. 8, 2013, which is incorporated herein by reference.
The present invention is directed generally toward testing paths in circuits.
The paths to the Pull-up/Pull-down of input/output pads are generally combinational paths. Combinational paths like these are not covered by conventional SCAN testing and are difficult to test explicitly. Faults in these paths can lead to excessive current draw during latch up testing, and it is difficult to diagnose whether the fault is due to the Pull-up or Pull-down path of the input/output pad.
Consequently, it would be advantageous if an apparatus existed that is suitable for testing paths to the pull-up/pull-down of input/output pads.
Accordingly, the present invention is directed to a novel method and apparatus for testing paths to the pull-up/pull-down of input/output pads.
One embodiment of the present invention is a SCAN chain architecture for each path in a circuit having combinational paths. The architecture includes a control mechanism to exercise each SCAN chain.
Another embodiment of the present invention is a method for testing paths in a combinational circuit. The method includes receiving a first voltage through a combinational data path and receiving a second voltage through an alternate data path. The first voltage and second voltage are compared to identify any faults in the combinational path.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention claimed. The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate an embodiment of the invention and together with the general description, serve to explain the principles.
The numerous advantages of the present invention may be better understood by those skilled in the art by reference to the accompanying figures in which:
Reference will now be made in detail to the subject matter disclosed, which is illustrated in the accompanying drawings. The scope of the invention is limited only by the claims; numerous alternatives, modifications and equivalents are encompassed. For the purpose of clarity, technical material that is known in the technical fields related to the embodiments has not been described in detail to avoid unnecessarily obscuring the description.
Referring to
During normal operations, the test control logic 100 controls pull-up and pull-down signals for each of the input/output pads 110, 112, 114 through a combinational path 116. The combinational path 116 is not included in any SCAN channel 118, 120, 122 or other SCAN architecture; therefore, faults in the combinational path 116 cannot be tested for structural defects that may cause undesirable current draw. For example, during latch-up testing, defects in the combinational path 116 could cause excess current leakage or other faulty behavior.
Referring to
In at least one embodiment, the test control logic 200 controls pull-up and pull-down signals for each of the input/output pads 210, 212, 214, 226 through a combinational path 216. The test control logic 200 is also connected to a path testing element 224, which is a set of serial flip-flops that control the pull-up/pull-down inputs of the input/output pads. The test control logic 200 controls the path testing element 224 through signals sent through one or more combinatorial paths 216, 228. The path testing element 224 is connected to each input/output pads 208, 210, 212, 214, 226.
Referring to
In at least one embodiment, the second multiplexer 330 receives signals from the test control logic 300 and a second flip flop 326. The second flip flop 326 is controlled by the output from the first three-state gate 342. The second multiplexer 330 selects either the second flip flop 326 generated signal or the test control logic 300 generated signal based on the bits from the test mode input 302. The output from the second multiplexer 330 serves as input to a second three-state gate 340. In one embodiment, the second three-state gate 340 is controlled by the output from a second inverter 334. The second inverter 334 receives an input from the test mode input 302 and outputs an inverted signal to the second three-state gate 340. In another embodiment, the second three-stage gate 340 is controlled directly by the test mode input 302.
In at least one embodiment, where dictated by a signal from the test mode input 302, the first three-state gate 342 and second three-state gate 340 are in a normal operating state such that the output of the first three-state gate 342 and second three-state gate 340 can be driven high or low based on the respective inputs.
In one exemplary embodiment, where a test mode input 302 indicates normal operation (for example, with a bit value of zero), a signal will pass-through the first multiplexer 328 to a combinational path 344 and a signal will pass-through the second multiplexer 330 to combinational path 346, while the first three-state gate 342 and second three-state gate 340 are in a high impedance state and will not allow a signal to pass through. The test mode input 302 also dictates which signal passes through the first multiplexer 328 and the second multiplexer 330. A signal from the test control logic 300 passes through the first multiplexer 328 along a combinational path 344 to a pull-up/pull-down of an input/output pad. Likewise, a signal from the test control logic 300 passes through the second multiplexer 330 along a combinational path 346 to one or more pull-up/pull-downs of one or more input/output pads.
Alternatively, where a test mode input 302 indicates SCAN operation (for example, with a bit value of one), the first three-state gate 342 and second three-state gate 340 will allow a signal to pass-through. The test mode input 302 also dictates which signal passes through the first multiplexer 328 and the second multiplexer 330. A signal from the first flip-flop 324 passes through the first multiplexer 328 and the first three-state gate 342, and serves as the input to the second flip-flop 326. The output from the second flip-flop 326 passes through the second multiplexer 330 and the second three-state gate 340 to a test path 348 connected to an input/output pad. In at least one embodiment, each output from the test control logic 300 is associated with one flip-flop 324, 326 and one multiplexer 328, 330. An output voltage at the test path 348 can be compared to a voltage along a combinational path 344, 346 to determine a fault in a combinational path 344, 346.
Referring to
In one exemplary embodiment, where a test mode input 402 indicates normal operation (for example, with a bit value of zero), a signal will pass-through the first multiplexer 428 to a combinational path 444 and a signal will pass-through the second multiplexer 430 to combinational path 446, while a first three-state gate 442 and a second three-state gate 440, controlled by a first inverter 432 and second inverter 434 respectively, are in a high impedance state and will not allow a signal to pass through. The test mode input 402 also dictates which signal passes through a first multiplexer 428 and a second multiplexer 430. A signal from the test control logic 400 passes through the first multiplexer 428 along a combinational path 444 to a pull-up/pull-down of a first input/output pad 456. Likewise, a signal from the test control logic 400 passes through the second multiplexer 430 along a combinational path 446 to one or more pull-up/pull-downs of one or more input/output pads 458, 460, 462, 464.
Alternatively, where a test mode input 402 indicates SCAN operation (for example, with a bit value of one), the first three-state gate 442 and second three-state gate 440 will allow a signal to pass-through. The test mode input 402 also dictates which signal passes through the first multiplexer 428 and the second multiplexer 430. A signal from a first flip-flop 424, controlled by a SCAN mode pin 450, passes through the first multiplexer 428 and the first three-state gate 442, and serves as the input to the second flip-flop 426. The output from the second flip-flop 426 passes through the second multiplexer 430 and the second three-state gate 440 to a test path 448 connected to second input/output pad 458. The output at the second input/output pad 458 is used to determine the integrity of the combinational paths 444, 446 during normal operation by comparing the voltage at the first input/output pad 456 to the voltage at the second input/output pad 458 during SCAN operation.
Furthermore, during SCAN operation, output from the test control logic 400 passes through one or more SCAN channels 452, 454 to one or more input/output pads 460, 462. The output at the one or more input/output pads 460, 462 is used for SCAN chain testing.
Referring to
Referring to
It is believed that the present invention and many of its attendant advantages will be understood by the foregoing description of embodiments of the present invention, and it will be apparent that various changes may be made in the form, construction, and arrangement of the components thereof without departing from the scope and spirit of the invention or without sacrificing all of its material advantages. The form herein before described being merely an explanatory embodiment thereof, it is the intention of the following claims to encompass and include such changes.